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PART I.
FRACTALS



Chapter 4: Methods for determining fractal dimensions 71

Chapter 4.

METHODS FOR DETERMINING
FRACTAL DIMENSIONS

When one tries to determine the fractal dimension of growing struc-
tures in practice, it usually turns out that the direct application of definitions
for D given in the previous two chapters is ineffective or can not be accom-
plished. Instead, one is led to measure or calculate quantities which can be

shown to be related to the fractal dimension of the objects.

Three main approaches are used for the determination of these quanti-
ties: experimental, computer and theoretical. Ezpertments represent a stan-
dard way of examining phenomena in every field of physics and they have
been playing an important role in the development of research concerning
fractal growth as well. The situation is less typical in the case of the other
two approaches. Since the physics of fractal growth lacks a unified theoretical
description, most of the investigations prompted by theoretical motivations
are based on computer simulation. The only theoretical principle which seems
to be applicable to a relatively wide range of growth processes is renormal-
ization which will be discussed in the last Section following a discussion of

the experimental and numerical methods for determining D.
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4.1. MEASURING FRACTAL DIMENSIONS IN EXPERIMENTS

A number of experimental techniques have been used to measure the fractal
dimension of scale invariant structures grown in various experiments. The
most widely applied methods can be divided into the following categories:
(a) digital image processing of two-dimensional pictures, (b) scattering ex-
periments, (c) covering the structures with monolayers, and (d) direct mea-

surement of dimension-dependent physical properties.

(a) Digitizing the image of a fractal object is a standard way of obtain-
ing quantitative data about geometrical shapes. The information is picked
up by a scanner or an ordinary video camera and transmitted into the mem-
ory of a computer (typically a PC). The data arc stored in the form of a
two-dimensional array of pixels whose non-zero (equal to zero) elements cor-
respond to regions occupied (not occupied) by the image. Once they are
in the computer, the data can be evaluated using the methods described in
the next Section, where calculation of D for computer generated clusters is

discussed.

The only principal question related to processing of pictures arises
if two-dimensional images of objects embedded into three dimensions are
considered. In Section 2.3.1. it has already been mentioned that the fractal
dimension of the projection of an object onto a (d — m)-dimensional plane is
the same as its original fractal dimension, if D < d —m. Unfortunately, there
are only heuristic arguments supporting this assumption, and considerable
deviations may occur from it, especially when D is only a bit smaller than
d — m. In addition, if D > d — m the method breaks down completely, since

in this case the projection is simply a (d — m)-dimensional object.

(b) Scattering experiments represent a powerful method to measure
the fractal dimension of microscopic structures (Teixeira 1986). Depending
on the characteristic length scales associated with the object to be studied,
light, X-ray or neutron scattering can be used to reveal fractal properties.
There are a number of possibilities to carry out a scattering experiment. One
can investigate i) the structure factor of a single fractal object, ii) scattering

by many clusters growing in time, iii) the scattered beam from a fractal
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Figure 4.1. Schematic representation of the incident and scat-
tered beams in a scattering experiment.

surface, etc.

In scattering experiments a beam of intensity Iy is directed on the
sample and the scattered intensity is measured as the function of the angle
¢ between the incident and the scattered beam. Let us denote the difference
between the wave vectors corresponding to these beams denoted by d =
Ky — ko (Fig. 4.1). In the case of small # (small angle scattering) the main
contribution to the scattered intensity comes from quasi-elastic processes
with |E1] = ]EI =k = 2w /X, where X is the wavelength of the incident beam.
Therefore, from Fig. 4.1

g = |G| = 2ksin(6/2). (4.1)

Most of the fractal structures studied experimentally are made of small
spherical particles whose size exceeds the spatial resolution typical in small
angle X-ray (SAXS) or neutron (SANS) scattering experiments. Thus, it is
useful to identify a single scatterer with a corresponding form factor P(q)

and separate the scattered intensity into two factors

I(q) = poP(q)[1 + S(g)], (4.2)

where pg is the average density in the sample, S(g) is the interparticle struc-
ture factor and we assume that the particles are spherical having a radius rg.

It can be shown that for gro < 1 the form factor is approximately constant
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(Guinier regime), while for gro > 1, P(q) ~ ¢~* which is called the Porod

law.

According to the theory of scattering (see e.g. Squires 1978), the
structure factor S(g) is the Fourier transform of the density-density correla-
tion function ¢(r) defined by the expression (2.14). In a three dimensional

isotropic system this means that

) = /O Ooc(r)rQSin;fT)dr. (4.3)

To calculate the actual shape of S(g) we recall that for {ractals the
density correlations decay with a power law depending on D in the form
c¢(r) ~ rP=4 (See Eqs. (2.16) and (2.18)). Tor a finite object of average
radius R, ¢(r) is expected to decrease very quickly to zero for r > R which,

for d = 3, can be taken into account by the assumption

c(r) ~rP3f(r/R), (4.4)

where f(z) ~ constant for z <« 1 and f(z) < 1if z > 1. The cutoff function
f(z) is presumed to depend only on the ratio r/R because of the self-similar
nature of the structure. Inserting (4.4) into (4.3) and changing the variable

of integration r = z/q we get

S(q) ~q P /OO P72 f(2/qR) sin zdz. (4.5)
0

This expression is expected to be valid in the range ¢R > 1 and gro < 1,
when the scattered beam probes the density correlations of particles within
the object. Since in this case f(z) is approximately constant up to large
values of z, the integral in (4.5) only weakly depends on ¢ and we can conclude
that

I(g) =~ S(q) ~¢7P for 1/R < q¢<1/r, (4.6)

since in this regime P(gq) is close to a constant. This is a result often used
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in1(q)

Tigure 4.2. Schematic scattering curve showing the three main
regimes which can be observed for an ensemble of fractal aggregates.

to estimate the fractal dimension of an experimental object. The statement
that the integral in (4.5) is only weakly dependent on ¢ can be supported
by further calculations based on an assumption concerning the actual form
of f(z). Supposing that f(r/R) ~ ¢~"/®% where a is a constant, one can
integrate (4.5) explicitly and arrive at (4.6) if agR > 1.

Thus, in scattering experiments one can distinguish three major re-
gimes (Fig. 4.2):
i) gro > 1> gb,
where b denotes the interatomic distance. In this case one probes the shape of
the individual particles the structure is made of. This regime is characterized
by a simple power law decay I(g) ~ ¢~* (Porod’s law).
i) gR > 1> gro
This is the region of ¢ values where (4.6) is expected to describe the spatial
fluctuations of particles on a length scale smaller than the average radius of
the object, R. In this case the fractal dimension can be determined from the
slope of In I(r) against Ingq.
i) 1>¢R
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In this limit the fractal object behaves as a single particle from the point of
view of small angle scattering. If a sufficiently dilute solution of clusters is
present in the system, this regime allows the applicaton of an independent

method for the determination of D which will be briefly discussed below.

According to the standard theory of scattering (Squires 1978), in the
region corresponding to case iii) the structure factor can be approximated

by the expresssion

poMy,
1+ ¢2R2/3+...)’

S(Q) ~ ( (47)
where M,, = S(0) is the weight average molecular weight of the clusters and
R, is a quantity proportional to the average radius of the the clusters (it is

equal to the so called z average radius of gyration). One expects that there
is a relation between M, and R, (Schaefer et al 1984)

M, ~ RP (4.8)

aﬁalogous to (2.2). Then one can determine D measuring S(g) in a diluted
system of aggregates growing tn time. Because of (4.7) the intercept of S(q)
with the ¢ = 0 axis provides M,,, while S(gq) starts to bend downward at
gR, ~ 1. D can be obtained by making a log-log plot of these quantitites as

a function of time.

The above analysis was concerned mainly with stochastic structures.
It can be shown that light diffraction on deterministic fractals embedded into
two dimensions results in a self-similar diffraction pattern (Allain and Cloitre
1986). In the related experiment a laser beam is directed onto the sample
which is a structure obtained after a few steps of one of the deterministic
constructions discussed in Section 2.3.1. The diffraction pattern observed
on a screen represents an optical Fourier transform of the object. The corre-
sponding structure factor S(p, ¢) can also be calculated and its value averaged
over the frequency bands scales according to (4.6). In particular, the optical
diffraction pattern of the fractal shown in Fig. 2.1. and its calculated struc-

ture factor were found to be self-similar. This is demonstrated by Fig.4.3.
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Tigure 4.3. Optical diffraction pattern and the corresponding
calculated structure factor of the fractal shown in Fig. 2.1a (k=5)
(Allain and Cloitre 1986).

(c) To measure fractal dimensions by covering the structure with probe
particles of varied radii (e.g. Pfeifer and Avnir 1983) is an obvious idea which
is directly related to the definitions of D discussed in Chapter 2. In order to
carry out an investigation of this sort one has to find materials which are well
absorbed by the surface of the objects. In addition, the difference €m0z — €min
belween Lhe smallest and largest radii of the molecules has to be large enough
so that at least two or three decades could be covered by the method. The
fractal dimension is then obtained from the relation n(e) ~ ¢~P equivalent
to (2.4), where n(e) moles/g is the number of absorbent molecules forming
a monolayer on the surface. This method is limited to measuring surface
properties, since closed but empty regions inside a fractal object are not
acccessible to the molecules. Obviously, the monolayer technique would give
D =1 for the Sierpinski gasket (Section 2.3.1.), provided we were confined
to two dimensions, while the mathematical definition allows covering the
fractal everywhere. On the other hand, it is expected to work well for open

branching structures and surfaces.

In a simple variation of this method the size of the molecules is kept
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constant and I, the radius of the particles having a fractal surface, is in-
creased. In this case n(e) ~ RP~3, where it is assumed that the number of

particles/g scales as R™3, i.e., they are not volume fractals.

Several experiments are based on the determination of the cumulative
volume V (r > €) of empty regions or holes with a characteristic radius larger
than €. A typical measurement of this type is used to study the structure
of porous media. For example, in porositometry, mercury is injected into
the object with a given capillary pressure p. The non-wetting mercury can
only enter pores with a radius larger than the radius of curvature inversely
proportional to p. The pore size distribution which can be related to the
fractal dimension is then obtained from the change of the volume of injected

mercury as a function of the increased pressure.

To find the € dependence of V' (r > €) one can use the following heuristic
argument (Pfeifer 1986). Let us cover the fractal structure with a minimum

number N(¢) of balls of radius e. Then the volume covered by the balls is
V(e) ~ N(e)e® ~ &P (4.9)

This is the volume which is is not available for particles (invading fluid)
having a larger radius (radius of curvature) than e, since by definition we
do not cover empty regions with radius a larger than e¢. Obviously, with
decreasing ¢, V (€) decreases by an amount equal to the increase of V (r > €),
i.e., —dV (€)/de = dV (r > €)/de. From here

dv(r > ¢) G gy

~ —¢€

> , (4.10)

where the left hand side can be determined experimentally for various € and
the corresponding log-log plots allow the calculation of D. Expression (4.10)
corresponds to a rule mentioned in Section 2.3.1. according to which the
number of holes of radius larger than € usually scales as e P.

When one uses a wetting {luid to cover a fractal (this might be es-

pecially useful in the case of macroscopic objects) the situation is similar
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because the capillary forces lead to a characteristic curvature in such exper-
iments as well (see Section 10.4). However, the geometry is inversed: Empty
regions with a radius larger than that of the meniscus are not filled. Nev-
ertheless, one expects that the volume of the wetting fluid surrounding the
object depends on the radius of curvature € according to the same law as

above, namely, V ~ €®~ for a range of ¢ values (de Gennes 1985).

(d) Measurements of physical properties of fractal objects can also
be used for the experimental determination of D. A number of methods
have been suggested, most of them based on electrical properties including
measurements of current, electromagnetic power dissipation and frequency
dependence of the complex impedance of fractal interfaces. These methods
typically provide an indirect estimate of D and have been used less exten-

sively than the above discussed approaches.

4.2. EVALUATION OF NUMERICAL DATA

Throughout this Section we assume that the information about the stochastic
structures is stored in the form of d-dimensional arrays which correspond to
the values of a function given at the nodes (or sites) of some underlying
lattice. In the case of studying geometrical scaling only, the value of the
function attributed to a point with given coordinates (the point being defined
through the indexes of the array) is either 1 (the point belongs to the fractal)
or O (the site is empty). When multifractal properties are investigated the
site function takes on arbritrary values. In general, such discrete sets of
numbers are obtained by two main methods: i) by digitizing pictures taken
from objects produced in experiments, ii) by numerical procedures used for

simulation of various growth phenomena.

In the case of random growth numerically generated data are typi-
cally produced by variations of the Monte Carlo method. In addition, exact
enumeration techniques and numerical integration of the corresponding equa-
tions can also be used. In Sec. 4.1. we discussed a number of techniques one
can use to get information from an experimentally grown structure. Anal-

ogously, there are many ways of determining the fractal dimension D from
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InN(R))

{nR

Figure 4.4. Schematic log-log plot of the numerically determined
number of particles N(R) belonging to a fractal and being within
a sphere of radius f£. If I is smaller than the particle size or larger
than the linear size of the structure a trivial behaviour is observed.
The fractal dimension is obtained by fitting a straight line to the
data in the scaling region.

numerical data. Below we discuss how to measure D for a single object. To
make the estimates more accurate one usually calculates the fractal dimen-

sion for many clusters and averages over the results.

Perhaps the simplest method is to use the delinition of D as given
in (2.2) and (2.3). In our case the unit length corresponds to the lattice
constant, and the number of balls of unit volume N(R) needed to cover the
structure within a sphere of radius R is the same as the number of sites
with a site function equal to 1 in the sphere. Since for growing fractals
N(R) ~ RP, plotting In N(R) versus In R results in a curve which has an
asymptotic slope equal to D. (Strictly speaking N(R) ~ RP is valid only if
there is an equivalence between the scaling observed by covering the structure
with a lattice of boxes (box counting) and using boxes of increasing size
centred on the same point (sandbox method). This equivalence exists only for
uniform fractals with no multifractal spectrum of their “mass” distribution
(see Section 3.4.))
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Thus, the fractal dimension can be obtained by fitting a straight line
to the asymptotic part of the N(R) data, e.g., using the method of least
squares. In practice one chooses a point belonging to the fractal (usually
close to its centre of mass) and counts the number of sites belonging to the
object within a sequence of spheres of growing radius. Instead of spheres one
can also use boxes of linear size L. Fig. 4.4 shows a schematic plot of this
kind demonstrating the crossovers which take place when R becomes smaller

than the lattice constant and R is larger than the size of the structure.

If the fractal object consists of small, nearly identical particles, one
can think of N(R) as the number of particles within a region of volume
R%, ie., N(R) ~ M(R), where M(R) is the mass of the cluster of radius
R. For convenience, in the following we shall frequently use the terminology
“particle” for a lattice site which belongs to the fractal (is filled) and cluster

for the objects made of connected particles.

A variation of the above method is generally used if the total number
of particles within a cluster is recorded during the growth. Such a situation
is common for example in Monte Carlo simulations, where the structure
is typically grown by subsequent addition of particles to the object. In this
approach one first calculates a quantity R, (NV) called radius of gyration using

the expression

LN 1/2
Rg(N)=<ﬁZT?) ; (4.11)

where r; is the distance of the ith particle from the center of mass of the
cluster and N is the total number of particles in the cluster at the given

stage of the growth process. Then, it is assumed that
Ry(N) ~ N¥, (4.12)

where v = 1/D. Therefore, 1/D can be obtained from the slope of the plot
In Ry as a function of In V. (4.12) corresponds to the assumptions that i) in

the asymtotic regime R, is linearly proportional to the total radius of the
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cluster, ii) corrections due to the boundary effects can be neglected and iii)

the structure is not a geometrical multifractal.

The fractal dimension of random structures can be also estimated from
their density-density correlation function c¢(r). According to its definition
(2.14), ¢(r)d%r is the probability of finding a particle in the volume d% being
at a distance r from a given particle. As was discussed in Section 2.3.1.

D—d and this expression allows the determination of D from the

c(r) ~r
corresponding log-log plot. When calculating ¢(r) the following procedure is
followed. One chooses a particle within the cluster and counts the number of
particles which are within a spherical shell of radius r and width §r, where
typically 67 ~ 0.1r. Then the same calculation is repeated for other particles
and the result is normalized taking into account the number of centres and
the volume of the shells used. In order to avoid undesirable elfects caused
by anomalous contributions appearing at the edge of the cluster one should

not choose particles as centres close to the boundary region.

Calculation of the correlation function is obviously closely related to
the previously mentioned methods. Counting the number of particles in shells
corresponds to determining the derivative of N(r). The most advantageous
feature of calculating D by determining ¢(r) is provided by the fact that using
this method one averages over many points within a single cluster which is

expected to improve the statistics.

Sometimes there is a large, slowly decaying correction to the simple
power law behaviour of N(R) or ¢(r). This correction may have various
origins and forms. For example, if the growth takes place along a surface,
the presence of the surface usually has an effect on the overall behaviour of the
quantities used for determining D. To extract the information concerning D
one assumes a special functional dependence of the correction. Then, instead
of fitting a straight line to the N(R) data one fits a curve of the following

form
N(R) =~ ARP[1 + f(R)], (4.13)

where A is a constant and f(R) is a function which is typically chosen to be
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decaying as an exponential or a power law (or a combination of these).

Selecting the most appropriate variables when plotting the results is
another effective way to obtain more accurate data. Many times there already
exists a theoretical result or a good guess of other source for the value of the
fractal dimension. In such cases it is the deviation from this value which
can be a quantity of interest. A common procedure is to plot for example
In[N(R)/RP] versus In R, where Dy is a guess for the fractal dimension. If
the true D is approximately equal to Dy, the straight part of the plot is close

to a horizontal line, and any deviation can be magnified.

In some cases it is not only the fractal dimension one has a hypothesis
for, but the entire functional dependence of N(R) or ¢(r) on their variables.
The finite size of the samples which are investigated necessarily leads to a
cutoff in the behaviour of these quantitics at R or r values comparable with
the cluster size. Because of the self-similar nature of fractals the actual form
of the cutoff also scales with the total number of particles in a cluster, and
its scaling behaviour is characterized by the same fractal dimension as that

of the radius. This fact can be expressed by the assumption that
¢(r) ~ (rR)P~4f(r/R), (4.14)

where R ~ NP is the radius of the cluster consisting of N particles and
f(z) is a cutoff function with f(z) ~ Constant for z < 1 and f(z) < 1
(exponentially small) for z > 1. According to the scaling assumption (4.14),
if a structure is stochastically self-similar, the data obtained for ¢(r) for
various values of /N should collapse onto the same universal curve f(z), when
In[(rR)@Pl¢(r)] is plotted against In(r/R) using the correct value for D.
A plot of this type is displayed in Fig. 4.5. The scaling shown in Fig. 4.5b
both provides a check of self-similarity and leads to a more reliable estimate
of the fractal dimension (Meakin 1987) than that obtained by attempting to
fit a straight line to the plot of In¢(r) versus Inr over an intermediate range

of length scales.

In case of a fractal measure defined on a growing structure, there is a

weight or probability attributed to each particle. The generalized dimensions
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Figure 4.5. (a) Density-density correlation functions for three-
dimensional off-lattice cluster-cluster aggregates (Section 8.1.1.).
(b) Using the assumption (4.14) the data can be scaled onto a single
curve (Meakin 1987).

Dg for such objects can be obtained using a procedure analogous to the
box counting method described at the beginning of this Section. The only
difference is that instead of simply counting the number of particles within
a region of radius R, one calculates x4(R), the sum of the gth power of
probabilities associated with the particles as a function of R. Then the
generalized dimensions can be determined from the slopes of plots of In x4 (R)
versus In R, since according to (3.7) Inx,(R) ~ (¢ — 1)DyIn R. The f(a)
spectrum is obtained from D, by Legendre transformation (see (3.11), (3.14)
and (3.15)).
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When discussing various evaluation techniques we assumed that the
necessary data are already available. To obtain the arrays of coordinates
corresponding to the positions of particles belonging to a fractal ususally
requires numerical procedures depending on the particular physical process
which is to be investigated. There are, however, a few general remarks which

should be considered when one simulates the growth of fractals in a computer.

For example, when applying the flexible Monte Carlo method one typ-
ically adds parlicles to the growing cluster according to some rules given
by the model which is used to simulate the phenomenon. The true fractal
behaviour is manifested only for NV — oo while, obviously, a computer sim-
ulation has limitations concerning the total number of particles N. In case
of slow crossovers between dillerent kinds of scaling behaviour — which is
typical for many growth phenomena — the data have to be extrapolated with
special care. Taking into account correction-to-scaling terms (4.13) or finite
size eflects (4.14) are examples for such analysis. Another possibility is to
use periodic boundary conditions when it is possible, and in this way mimic

an infinite system by a periodic sequence of finite subsystems.

Finally, in stochastic simulations randomness is introduced with the
help of random number generators. Here again, one has to be careful, because
it can be easily shown that the simplest methods fail to produce a long
sequence of staistically uncorrelated random numbers. This problem can be

avoided by “mixing” two random number generators (Stauffer 1986).

Ezact enumeration techniques provide an alternative to Monte Carlo
methods to generate data for the determination of fractal dimensions. Here
the philosophy is quite diflerent; instead of generating large clusters with
stochastic deviations from the true average behaviour, one studies small
clusters exactly and extracts results from careful extrapolation to the large
system limit. Growth phenomena are not very suitable for such approaches
because in most of the models the same configuration can be realized in many
ways each contributing to the average scaling with a different weight. This

fact usually makes the calculations prohibitively expensive.

In the case of modelling growing self-avoiding walks (Sec. 5.4.2) the
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situation is less complicated since there is a unique sequence leading to a
given chain. For self-interacting growing walks each conliguration of N steps
(particles) has its own weight (probability) which is associated with it when
calculating the average radius of the walks. Let us denote by (RZ(NV)) the
mean-square end-to-end distance and suppose that it is proportional the
mean-squared radius of a chain. To obtain D from the enumeration data one

assumes the following scaling form (Djordjevic et ol 1983)
(RZ(N)) = AN¥P(14+ BN~ + CN~1 4 ..), (4.15)

where A, B and C are constants and A is a non-trivial correction-to-scaling
exponent. (4.15) is expected to be a good approximation for N > 1. From
the above expression one finds an estimate for the fractal dimension defined

for clusters consisting of N particles

B In[(N +1)/N] _ AB._ ., C__
D(N) = 1n[(R3(N+i))/(R§(N)}]—D+TN + 5N 4. (4.16)

Assuming that A > 1 one finds D from the intercept of the plot of
D(N) against 1/N with the D(N) axis at 1/N = 0 (see Sec. 5.4.2). The
value of the integer number 7 is usually chosen to be 1 or 2 depending on the

type of lattice on which the growth takes place.

To complete the analysis it has to be shown that the correction-to-
scaling exponent is indeed larger than unity. This can be done by plotting
the quantity In[D(NN) — D] versus In N, where D is the asymptotic value as
determined by the above extrapolation. If A > 1, one gets a slope equal to

-1; otherwise the slope is equal to —A.

4.3. RENORMALIZATION GROUP

It has already been mentioned in the Introduction that there is a close re-
lationship between fractals and critical phenomena. In the experiments on
systems exhibiting second order phase transition a power law dependence of

the relevant physical quantities was observed. The exponents characterizing
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the scaling of these quantities were found to have non-integer values just like
the mass of a growing fractal scales with its radius according to an exponent
D which is not an integer number. In fact, the analogy is deep, since it is
self-similarity which is behind non-standard scaling in both cases. This was
shown in the investigations of critical phenomena where the scale invariance
of the systems at the critical point was demonstrated by both experimental

and theoretical approaches.

The above scale invariance forms the basis of renormalization group
theory which has been successfully applied to the description of continuous
phase transition through the calculation of the critical exponents and the so
called phase diagrams revealing the relevance of the parameters eflecting the
transition. The idea of the Position-Space Renormalization Group (PSRG)
approach is to renormalize a system with many degrees of freedom into a
system having less degrees of freedom. The origin of many (infinite) degrees
of freedom and scale invariance is the same: at the critical point the system
possesses large fluctuations (regions belonging to one of the two phases) with

no characteristic size.
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Figure 4.6. During this simple version of position-space renor-
malization four sites of the original system are replaced with a sin-
gle new site having a renormalized fugacity K'. In this example the
factor by which the linear size of the system is rescaled is equal to

b=2.

In the course of application of PSRG a part of the system defined on

a lattice is replaced with a cell containing smaller number of sites (Fig. 4.6).
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In order to account for scale invariance, however, during this transformation
one has to change the weights associated with the filled sites so that the two
systems (the original and the renormalized one) behave in the same way.
The successive replacement of larger parts of the system with smaller ones
is an tnverse analogue of the recursive generation of deterministic fractals.
At its critical point an infinite system is invariant under the renormalization

procedure.

It is a quite obvious idea to try to apply this concept to growth phe-
nomena leading to fractal structures. The renormalization scheme to be
described below is analogous to the PSRG used for calculating critical ex-
ponents of equilibrium systems (Stanley et al 1982), and is based on the
generating function (Nakanishi and Family 1985)

oC

G(E)= ) > Pn:K", (4.17)
N i

=1

where Py ; is the probability of creating the ith configuration consisting of
N particles and K is a fugacity associated with each element of a cluster so
that the total fugacity of a cluster is K. In the case of growth phenomena
the total probability of generating clusters of size IV is

> Pui=2_ [ onil) =1, (4.18)

since the creation of a cluster of IV particles is a certain event (occurs with
a probability equal to one) for all N, because of the ever growing character
of the process. In the above expression py;(j) is the probability of adding
the jth particle to the ¢th conliguration of N particles. According to (4.18)

Q) = i K, (4.19)
N=1

This power series has a radius of convergence K. =1.

Next we calculate K, the average radius of gyration of clusters using
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the generating function (4.19). Since the radius of gyration of a cluster con-
sisting of N particles scales as I2y(N) ~ N¥ with v = 1/D (see preceding
Section), we can determine the fractal dimension by finding a relation be-

tween Ry (V) and N for a given growth process. The grand canonical average
of R,(N) is

3w Y
Ry= =2 "—0v ~ (K, — K)7". 4.20
To see this, one approximates the above sums by integrals (this can be done
because the singular contribution to the sums come from the region N > 1).

IFor the numerator one has

/OONVI{NdN —~ /mNVeNln[l—(Kc—K)] dN
0 ° o (4.21)

~ (K, — K)~v! / 2e *dz ~ (K, — K)™" 1,
0

while similarly, the denominator in (4.20) diverges as (K.— K)~!. Therefore,
if a quantity scales with growing N according to an exponent v, the same
quantity diverges with an exponent —v when K — K. = 1. The calculation
of D then reduces to the determination of v for which the standard renor-
malization group method can be applied with the modifications discussed

below.

As in usual critical phenomena the condition for renormalization is to
conserve a generalized form of the generating function (4.17), while rescaling
all lengths by a factor denoted by b. One should not consider the generating
function (4.17) as a quantity to be conserved; this would always yield K’ =
K and does not lead to any reasonable conclusion. Hypothetically exact
renormalization would generate “further range interactions” which would
require the consideration of many parameter generating functions and many-

cell renormalization.

Instead, as a pragmatic simplification, one chooses a one-parameter
formalism corresponding to a modilied generating function based on the cal-

culation of the most relevant contributions. This is achieved by equating the
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renormalized fugacity K’ to the contribution of spanning configurations to
G(K) within a cell of size b?

K'=>"% PyoK", (4.22)
N 1

where Py i is given in (4.18), Here the second summation is quite non-trivial,
it is taken over all spanning configurations (labelled by ¢’) consisting of NV
particles, where spanning must be defined appropriately for each problem
(Nakanishi and Family 1985).

From the known renormalization transformation K’(K), the fractal

dimension can be calculated by the usual fixed-point analysis. Let us linearize
K'(K)

K, — K' = MK, - K) (4.23)

around its fixed point K., where K'(K.) = K. and A = dK'/dK|k,. On the
other hand, R, in the system with K is proportional to (K, — K) ™", while in
the renormalized one R, ~ (K. — K')™¥. Since the system with fugacity K’
is obtained by rescaling of the lattice units by a factor b, the condition that

the radius of gyration should be invariant under the renormalization leads to

b(K, — K')7Y =~ (K, — K)™". (4.24)

l

Comparing (4.23) and (4.24) we find
1

D=>-==22 4.25

: (4.25)

where A, the eingenvalue of the recursion relation (4.22) linearized around
K. can be calculated for small cells analytically, while for large cells it can

be obtained using numerical methods.

To determine D in a small cell renormalization method one needs to

calculate the sum of Py ;-s corresponding to spanning configurations, where
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the definition of spanning depends on the particular model to be renormal-
ized. This will be demonstrated on the example of true self-avoiding walks at
the end of this section. In general, small cell renormalization does not lead

to good estimates for the fractal dimension in the case of growth models.

Large-cell Monte Carlo (MC) renormalization (Stanley et al 1982,
Nakanishi and Family 1985) represents an alternative way to improve the
accuracy without including more than one parameter. In this method cells
with large b are considered, and the actual configurations are generated by
a computer. Using larger cells is expected to lead to more reliable results
for a number of reasons. Within a cell the behaviour of the system can be
well approximated, and going to larger b increases the size of region which
is treated with a good accuracy. In addition, undesirable surface ellects are

gradually eliminated as b — co.

The basic idea is that the sum of Py -s taken over ¢’ is nothing
else than the fraction of spanning configurations of size N among all config-
urations consisting of IV particles. Therefore, if we generate configurations
randomly (according to the rules of the given model), then the sum of Py i1-s
correspond to the fraction of spanning configurations among all the config-
urations generated. In this approach first one determines Dy, the fractal
dimension obtained using cells of linear size b, and then plots these values
against 1/Inb to obtain the extrapolated value corresponding to the presum-

ably exact b — oo limit.

The Monte Carlo renormalization method can not be used with satis-
factory results if the specific properties of clusters are disadvantageous with
regard to the spanning rule. In the case of growth processes it is quite com-
mon that the behaviour of the clusters’ surface is qualitatively different from
their global properties. This fact is likely to be the reason for the unusually

slow convergence of large-cell MC results.

The results can be improved by modifying the spanning rule. Accord-
ing to this modification, a cluster is considered as spanning the cell if its
radius of gyration (R;) becomes equal to b/2. R, represents an averaging

over the shape of the cluster and it is expected that the effects caused by
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strong {luctuations in the surface structure can be eliminated by using R, for
characterizing the spatial extent of a cluster. A further improvement can be
achieved by introducing a phenomenological parameter « and assuming that
kR, should become equal to /2. The “fixed point” k* of this optimization
parameter is defined as the value for which the estimates of D for various b
are the same. This method makes it possible to obtain accurate results using

relatively small cells (see Section 6.1.3).

EXAMPLE

In this example we shall demonstrate how to apply small cell renormalization
to cluster growth processes (Nakanishi and Family 1984), by calculating the
fractal dimension of the so called true self-avoiding walks (TSAW-s). This
is a simple, but inherently kinetic growth model with non-trivial behaviour
different from that of ordinary random walks in dimensions not larger than
two. A TSAW is a random walk which attempts to avoid itself whenever it
is possible. In its simplest version treated here (more details about TSAW-s
will be given in Section 5.4.1.) a true self-avoiding walk can cross itself only
if there is no way to proceed without jumping into a site which already has

been visited.

(a) (b)

Figure 4.7. Two examples for true self-avoiding walks. Their
weights are different, because the configuration 4.7b has two con-
strained steps, while 4.7a has only one (the last step).

By definition such a walk grows indelinitely and the statistics of a
TSAW is controlled by its past history. This statement is illustrated by Fig.
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Figure 4.8. Spanning configurations of true self-avoiding walks in
a 2 2 cell which are renormalized into one in (e). The probabilities
corresponding to a given step are also indicated (Nakanishi and
Family 1984).

4.7 showing two five steps walks. They are created with dillerent probabilities
Py 1= (%)(%)3(%) and P55 = (%)(%)2(%)2 since the configuration Fig. 4.7b
contains a constrained step at the end. Moreover, a walk has a different

weight when traced in the opposite direction.

Application of the small cell renormalization approach on a 2 x 2 cell
requires the calculation of the relative probability of spanning configurations.
To make the spanning rule specific, we assume that all walks start at a
corner site of the céll, and are restricted to stay within the cell until they
exit via one of the external bonds. The probabilities py ;(7) are calculated
by counting at each step only those open bonds which are within the cell.
Because of symmetry spanning in one direction is considered. Fig. 4.8 shows
the spanning configurations together with their weights and the renormalized
cell. According to this figure the renormalization transformation (4.22) for
TSAW on a 2 X 2 cells has the form

1: 12
= 2K &

1

i
6K3 + EK4‘ (4.26)

From here K, =1 and A = dK'/dK|x, = 3. Using (4.25) yields for the frac-
tal dimension D = In(8/3)/In2 ~ 1.415. The corresponding result for a 3 x 3
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cell is somewhat larger, D =~ 1.419. Calculations for the three dimensional

case can be carried out analogously. For the 2 X 2 x 2 cell one gets

1 11 29
K4 K K
o "1™ T ios0
127 79 61
RS KT
T 8640 T 12060 T 25920

%K’ Ly
7 (4.27)
K8

which leads to DD ~ 1.70.

This example demonstrates the advantages and problems associated
with small cell renormalization of growth models. The numerical results
obtained are rather poor since it can be shown that the fractal dimension
of TSAW is 2 for d > 2. On the other hand, small cell renormalization can
provide qualitative information about D using simple algebra, even for highly
non-trivial models. This method is more useful for studying growth processes
depending on a parameter. Then, application of a two-parameter version of
PSRG may reveal whether this parameter is relevant enough to change the
fractal dimension. However, calculations of this sort published so far are

based on approximations whose justification is not sufficiently satisfactory.
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