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Collective transport of particles in a “flashing” periodic potential
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We consider the collective motion of finite size Brownian particles induced by a one-dimensional, spatially
asymmetric, periodic potential which is turned “on” and “off” dichotomously. The particles interact through
simple hard-core repulsion. We show analytically that this simple system exhibits an interesting collective
behavior:(i) the direction of motion can change many times as the density of particles is incrégseldse
to the maximal density, the average velocity depends on the size of the particles in a very complex way, both
in sign and magnituddS1063-651X96)50407-1

PACS numbds): 05.40:+j, 05.60+w, 87.10+€

Recent theoretical and experimental works have showmexamine the high-density one. We then calculate how the
that dissipative processes in structures possessing vectoriverage velocity evolves between these two limits before
symmetry can induce macroscopic average motion, even igonfirming our picture through simulations.
the absence of any macroscopic driving force or field gradi- To set notations, we considé overdamped Brownian
ent[1-9]. On the one hand, these studies may provide amarticles of sizeb moving on a segment of length. They
appropriate framework to analyze the operation of the motoare submitted to a “sawtooth” periodic potenti&g(x,t),
proteins in charge of, e.g., cellular transport or muscle conwhich is periodically turned “on”[V=V(x)] for a time
traction[10]. On the other hand, they can also lead to novelr 5, and then “off” for a time oz [V=Vs=0] (see Fig. 1
separation techniques. Indeed, a man-made device that crgnits are chosen so that the potential spatial pexiasi 1, as
ates a spatially asymmetric periodic potential switched orwell as the friction coefficient of the particles. The asymme-
and off periodically in time was predicted to generate a netry of the potential is characterized by the lengthof its
current which is highly sensitive to the diffusion coefficient steepest slope.
of the particleq 1], a claim experimentally confirmed with If x; denotes the position of theenter of particlej, the
electrode devicegl1,12 and optical tweezerfl3]. evolution of the system is then described by the Langevin

Recently, special attention has been paid to collective efequations:
fects which are clearly important: in many biological situa-
tions numerous motors operate together, and in artificial )'(J: —aV(x D+ (), j=1,...N (D
structures the effect of interactions is crucial for separation.

Two models have been recently studied:finite size par-  \hich are coupled by the constraint that neighbor particles
ticles (interacting through hard-core repulsjon an asym-  gre not allowed to overlapx{—x;_;)>b. &(t) is a Gauss-

metric potential tilted back and for{ti4]; (i) a collection of i3 \white noise of autocorrelation functiofg;(t) &(t’))
motors, rigidly attached to each other, that independently

adsorb and desorb.e., switch from on to off from a peri-

odic structurg/15]. In both cases, collective effects lead to

new features. 4
In this paper we focus on a situation closer in spirit to

what would arise in one-dimensionélD) artificial struc-

tures: we consider particles with hard-core repulsion, in an

asymmetric potential that is switched on and afthe same

time for all the particlesand that isat every instant flat on Vu(x)

large scales This natural extension to many particles of the Q

on-off model of Ref[1] also leads to a rich phenomenology. b

In particular, for long enough duration of the “off” inter-

vals, we prove analytically that the average velocity can -— . x

change sign a few times as particle density is increased from Ay=la
0 to 1, and that its sign and amplitude at high density is

extremely sensitive to the particles size. The outline of the
paper is as follows: we first introduce our model and the g 1. schematic picture of the system showing two particles
considered regime. After recalling the low-density limit we of sjze b submitted periodically to the sawtooth periodic potential
Von(X) for a time 7y, and then to the flat potentisl, for a time
Toff - The sawtooth potential has a peripe- 1, sum of a short size
:Electronic address: derenyi@hercules.elte.hu N;=a and a long oné ,=1—a. The corresponding energy barrier
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L suration of the particle system to the potential period will
play a crucial role.

To see this, consider the limit cagg=1 (L/N=b),
where the system is equivalent to a single particle of size
L, the position of which is measured by for example.
Take now the limit of a very large systemt—o. In the
incommensurate case (irrational), the particles are then
uniformly distributed in the periods whatever the value of
X1, S0 that the whole system feels a flat potential whether the
sawtooth potential is “on” or “off”; the average velocity of
the particles is zero. This is to be contrasted to the case of
Ref. [15] where, as particles switched between “on” and
“off” independently, motion could be obtained in the in-
commensurate situation. We now turn to the much richer

L commensurate casb=n/m in irreducible form. Simple al-
gebra shows that the effective potential seen by the equiva-

FIG. 2. During the motion of the particles in the flat potential l€NtL-size particle during “on” periods is a sawtooth poten-
Ve, the real system can be reduced to a system ofisizblbwith ~ tial of period A" =1/m with two linear pieces of lengths
N noninteracting pointlike particles. The intervals between the parh ;={ma}/m and A;={m(1—a)}/m [14] (the notation{ }
ticles are kept constant when switching from one system to theéneans the fractional partThe barrier height iNQ’, where

other.

, {mal{m(1-a)}
=2kT9;6(t—t'). We consider &b<1 as a system of Q= maml—a) @
particles of siz&k+b (k integep can readily be mapped back
to the cas&k=0 (with the changd.—L — NK). The effective temperature is also modifidd:=T/N (dif-

Before going further let us briefly comment on a simplefusion is slowe), so thatNQ’'>kT’. Applying the single
way to describe the diffusive “off” stage in a general caseparticle limit to the equivalent particle, we get its average
(see Fig. 2 The system can be “compressed” to a set ofdisplacement per cycl@vhich is that of every real particle
N pointlikeparticles in a system of side—Nb, keeping the
intervals between particles unchanged. Since these point
particles are identical, whether or not they are allowed to
cross does not affect the evolution of the system: when two
pointlike particles meet we can either let them cross and A formal problem with the above analysis is that the dif-
swap (renam¢ them afterwards, or forbid crossing, the fusion coefficient of the equivalent particle k§/N so that
choice does not affect their final position. This means thatandomization in the “off” phase cannot be achieved in a
the particles can be handled asninteractingones as long finite time 7o (in the limit N—o, o=1). Consider instead
as they are reordered at the end of the “off” stages].  the commensurate case with a dengity 1—¢e, 0<e<1,
Inverting the “compression” procedure leads back to theand take first the limiN—cc. What are the differences with
original system. the o=1 case? At the end of an “on” pinning stage, there

Let us now investigate how the average velocitpf the  are now a few very distant empty spaces at the top of some
particles depend on their sibeand densityp=bN/L, inthe  potential barriers, the sizes of which are usually not greater
limit of large systems il andL go to infinity while o re-  thanb, that separate groups efl/e “touching” particles.
mains finitg. To getanalytical solutions we focus on spe- This gives the initial conditions for the following diffusing
cific regimes, as was done for the simpler, one particle limitstage: in the “compressed” pictuf&ig. 2), each group con-
(e—0) [1]. First the pinning potentiaV/,,, is taken strong sists of many pointlike particles located at the same position,
enough so that during the timeg,, the particles drift quickly ~separated by distances of order So if the “off” time al-
to the positions corresponding to the nearest local energpws a free particle to diffuse on distances of orlerthe
minimum of the system, where they get trapped. This deeparticles will be randomly distributedtypical separation
potential valley limit @>kT) furthermore suits fast separa- =&b). Upon switching the sawtooth potential “on,” to ze-
tion purposes. Second, most of our results will be obtained imoth order ine the average displacement(d) as given by
the limit wherer is long enough for the particles to forget Eq. (3). Thus, the average velocity tends towards
(modulo the period their initial position on the sawtooth =(d)/(7,,* 7o) aSe goes to zeroz being kept constant
during an “off” period. The average displacement over abut large enough to allow free diffusion over distances larger
cycle is then that of initially randomly distributed particles than b: 7,3>0b2/(kT) in our units. A crucial point of this

1 1
()= 5= A))= 5 (1-2{ma}). ®

during a single “on” phase. argument is thalN should be larger than 4/ indicating that
In the low-density limit, a particle with random initial N—oo, p—1 is a singular limif 16].
position in the[ —\,,\;] period [averagex=3(A,—\;)] This leads to a quite strange behavior for the high-density

ends atx=0 after an “off” phase. The average progression (N—o, p=1—¢) drift as a function of the particles size as
per cycle is thugd)=3(A,—\;)=1/2—a [1]. Let us now illustrated by Fig. 3(similarly as in Ref.[14]). The limit
turn to the other extreme: an almost packed systeril. As  average displacement per on-off cy¢t) is an erratic, dis-
in previous studies of collective effedis4,15, thecommen-  continuous function with sharp peakgiven by Eq.(3)] for
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FIG. 4. The plot of d) +a as a function of the density for five
different values ofb, valid if a lies in the appropriate interval,
which is respectively[0,1/2], [1/3,1/2, [1/3,1/2, [2/5,1/2, and
[2/5,1/2) in decreasing order df.

when the potential is switched “on,” the particles remain in

their starting valley, and the minimal energy configuration in

each valley is independent of what happens in the neighbor-

ing ones. Always assuming that the particles are randomized
FIG. 3. High-density limit for the average particle displacementPefore each “on” period, one can calculate the probabilities

per on-off cycle(d) as a function of the particles site for differ- ~ that 0,1,...,m particles will start in the same vallefthe

ent values of the asymmetry parameder

rational values ob, and zero otherwise. Both positive and

negative peaks are present, in a pattern that depends on the 0.05 " J .
theoretical —
value of the asymmetry parameter 0.04 \ (a) T =01 e
Remember that at zero particle density, the average dis- 1:2&:02032 _____
placement per cycle is positid a<0.5), and independent 0031 Toff = 0.01 e
pf the size of the particlgs. Increasing the density frqm Oto1, A 0.02} Totf = 0.0032 == 4
it evolves to the discontinuous function lofshown in Fig. 3. <= Tott = 0.001 ---- '.'
The question is how this occurs. When the density is still less Voot \ ) |

than one the functiogd(b)) has to be continuous, due to the 0 m..._,,,_ >
smoothing effect of the finite temperature. But we will now

show that increasing the density from 0 to 1 while keeping -0.01}

the particle sizé fixed, the velocity can vary nonmonotoni- .

cally and can even change sign several times, along a route (b)

that will be sensitive to the actual value lof 25 Tof=0.1  --—- i
Let us start with a simple pedagogical exampde: 1/3 20t Toff = 0.032 ----- i

anda=0.5—-b/4. For very small particle densities, a particle = Toff = 0.01 oo !

is usually alone in some potential period or valley. Its aver- g 155 Toff = 0.0032 -

age displacement per on-off cycle is abdid, as it is the é\ 10l Toff = 0.001 ---- ;’

distance between its eventual positithe bottom of the Y, 1

valley) and its average starting positidthe middle of the 5 ,',

valley). At larger densities, when on average two particles 0 e rmrna m__/,;_,_

fall into a valley, they will end in the configuration of mini- e

mal potential energy: the two particles touch each other, with -50 Y 02 05 o8 1

the center of the right particle in the bottom of the valley. ' ) p ’ )

Thus, the center of mass of the two particle®#4 far from
the middle of the valley to the left. Therefotd), the aver-
age drift during the “on” stage, is now aboutb/4, a

FIG. 5. The plots(a) and (b) show respectively(d) and

“negative” value. At even higher densities, with about three q)/7 . as a function of the density in the caseb=1/5,
particles per valley, the average displacement will be abou§=0.5-b/4=0.45,kT=1, for different values ofry;. Supposing

b/4 again.
Analytical calculations are actually possible for=1/m
with m=2,3,..., as thevalleys are then “independent”:

<d>/7'off
v={(d)(Ton+ Tof)-

is

a good

thatQ is large 7y, can be chosen small enough,{< 7.) so that
approximation

of the velocity
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intervals between particles follow a Poisson distributiddy  the “off” state is larger at low density, in agreement with
determining the corresponding minimal energy configura-our estimate that it should scale &8 at low density and
tions at the end of the “on” staggd) can then be computed rather asb? at high density{16]. More importantly, Fig. 5
explicitly. This straightforward procedure becomes tediousshows that the features obtained in this paper survive the
for largem and leads to long formulas. Curves are plotted inrelaxation of the “randomization” hypothesis. It also proves

Fig. 4, and we only give the simplest formula: that the high density velocities =(d)/(7on+ 7o) Can be
1 1/1 0 larger than the optimal low density ones: particles in the
(dy=—+— __1) 1—exp< -—|-a (4) “off” state need not diffuse on a distanae but only onb,
4 4l\e 1-e which allows us to reduce the cycle time.

for b=1/2 and G=a<0.5. It is actually easy to see that for In conclusion, we have analyzed the main features of the

any rational value of b (b=n/m), the quantity collective directed motion of finite size, overdamped Brown-

(d(e,a))+a does not depend oa within intervals where ian pgrticles .in a one—djmensional, spatia_lly asymmetric,
the minimal energy configurations are the same but for aflashing” periodic potential. Through analytical arguments
shift of —a. Therefore, in Fig. 4, we have plottéd)+a as We have calculated the average particle velocity in certain
a function ofo. limits, exhibiting a few striking points: its direction can al-
The figure shows that the average displacenjenteloc-  ternate upon increase of the particle density, and its value is
ity) of the particles is a nonmonotonous function of the denvery sensitive to the particle size at high density. The one-
sity. For well chosen values di (e.g., a~0.5—b/4) the dimensionality of the problem certainly favors the occur-
direction of motion can even change several times. Théence of such salient features. We, however, hope that this
curves obtained are consistent with both the low-density restudy will encourage the theoretical and experimental analy-
sult(d)+a=1/2 and with our high-densityg— 1) estimate sis of the influence ofollective effectin real 1D, 2D, or 3D
as quantified by Eq3). propelling device$11-13: a strong sensitivity to properties
Eventually, to investigate the range of validity of our ana-of particles and a highly nonlinear behavior are features that

lytical results, we performed numerical simulations using thecould be taken advantage of for separation purposes.

compression picture, and present hdreég. 5 the case _
b=1/5, a=0.5—b/4=0.45 kT=1, for different values of The authors are grateful to J. Prost and T. Vicsek for

Toit - FOT large values of (€.9., o= 0.3), the simulation USeful discussions. The present research was supported by
result is indistinguishable from our analytic predictions.the Hungarian Research Foundation Grant No. F17246, and
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