Supporting Material

Czövek, Szöllősi, and Derényi

Table S1. Prescribed criteria for the optimization

observable	prescribed value	experimental conditions
velocity	-6 nm/s	$[ATP] = 10 \ \mu M, F = -15 \ pN$
velocity	$-23~\mathrm{nm/s}$	$[ATP] = 1000 \ \mu M, F = -15 \ pN$
velocity	$140 \ \mathrm{nm/s}$	$[ATP] = 10 \ \mu M, F = 0 \ pN$
velocity	$460~\mathrm{nm/s}$	$[ATP] = 1000 \ \mu M, F = 0 \ pN$
velocity	$210~{\rm nm/s}$	$[ATP] = 10 \ \mu M, F = 15 \ pN$
velocity	$520~\mathrm{nm/s}$	$[ATP] = 1000 \ \mu M, F = 15 \ pN$
processivity	$110 { m steps}$	$[ATP] = 1000 \ \mu M, F = 0 \ pN$
#ATP hydrolyzed/step	1.35	$[ATP] = 1000 \ \mu M, F = 0 \ pN$
#fwd/#bwd steps	400	$[ATP] = 1000 \ \mu M, F = 0 \ pN$
stall force	$-6.75~\mathrm{pN}$	$[ATP] = 1000 \mu M$

The cost function for each of the first 9 observables has been set to $(X - X_0)^2 / X_0^2$, where X stands for the observable and X_0 is its prescribed value, whereas for the last observable it has been set to $(X - X_0)^2 / (1 \text{ pN})^2$.

1

	velocity	#ATP/step	processivity	stall force	dwel	l time of fwd	. steps at	dwell time o	of bwd. steps at	#fwd./#bwd.
					stall force	F=15 pN	F=15pN	F=-15pN	F=-15pN	
							[ATP]=10 μ M		[ATP]=10 μ M	
	(um/s)			(Nd)	(s)	(s)	(s)	(s)	(s)	
Original model parameters	457	1.36	106	-6.75	0.20	0.016	0.039	0.35	1.27	308
$[ADP]=100 \ \mu M$	454	1.35	100	-6.75	0.20	0.015	0.022	0.34	0.4	284
$[\mathrm{ADP}]{=}1000\mu\mathrm{M}$	421	1.33	61	-6.5	0.16	0.015	0.015	0.3	0.17	146
$[ADP]=10000 \ \mu M$	222	1.28	10	-5.75	0.10	0.015	0.014	0.19	0.14	19
N = 6	338	2.14	321	-6.25	0.20	0.019	0.05	0.33	1.22	138
N = 7	213	3.95	585	-5.5	0.19	0.023	0.072	0.32	1.22	80
N = 8	140	6.5	827	-5.25	0.23	0.027	0.090	0.32	1.21	52
$N_{ m d}=2$	68	13	3	-3.75	0.47	0.042	0.14	0.46	1.36	51
$N_{\rm d}=3$	321	2.27	28	9-	0.19	0.018	0.047	0.38	1.31	300
$\alpha = 50^{\circ}$	457	1.36	106	-6.75	0.20	0.017	0.043	0.45	1.48	308
$\alpha = 60^{\circ}$	457	1.36	106	-6.75	0.26	0.02	0.06	15.1	22.8	305
$\alpha = 70^{\circ}$	457	1.36	106	-6.75	1.6	3.7	14	N/A	N/A	314
$l_{ m p}=0.43~{ m nm}$	357	1.93	26	-6.75	0.22	0.017	0.044	0.42	1.55	359
$l_{\rm p}=0.45~{ m nm}$	454	1.37	80	-6.75	0.19	0.015	0.038	0.36	1.32	351
$\Delta G_{\rm T,T^*} = 0 \ k_{\rm B} T$	424	1.37	84	-3.25	0.21	0.015	0.039	0.35	1.28	196
$\Delta G_{\mathrm{T,T^*}} = -2 k_{\mathrm{B}} T$	453	1.35	103	-4.25	0.20	0.015	0.039	0.35	1.28	287
$\Delta G_{\rm T,T^*} = -4 k_{\rm B} T$	457	1.35	106	-5.25	0.20	0.015	0.039	0.35	1.28	306
$\Delta G_{\rm T,T^*} = -10 \; k_{\rm B} T$	444	1.47	106	-8	0.16	0.016	0.040	0.34	1.25	306
$\Delta G_{\mathrm{D},\mathrm{D}^*} = 0 \; k_\mathrm{B} T$	408	1.28	223	4-	0.18	0.014	0.032	0.32	1.20	57
$\Delta G_{\mathrm{D,D^*}} = 2 \; k_\mathrm{B} T$	418	1.28	194	-S	0.18	0.014	0.03	0.32	1.20	99
$\Delta G_{\mathrm{D,D^*}} = 4 k_\mathrm{B} T$	445	1.29	132	9-	0.19	0.014	0.035	0.33	1.23	121
$\Delta G_{\mathrm{D,D}^*} = 7 k_\mathrm{B} T$	416	1.64	66	-7.25	0.20	0.019	0.051	0.40	1.32	845
$\Delta G_{\mathrm{D},\mathrm{D}^*} = 10 \; k_\mathrm{B} T$	133	7.1	93	-7.75	0.28	0.068	0.25	0.52	1.41	066
	ATP] = 100() $\mu \mathrm{M}$ and $F=$	0 throughout unle	ss indicated ot Table conti	herwise. Value: inued on next p	s in bold indic: age.	ate deviation by mo	re than a factor	of 2.	

Table S2. Effects of the parameter change on some of the observables

	velocity	#ATP/step	processivity	stall force	dwel	l time of fwd	. steps at	dwell time c	of bwd. steps at	#fwd./#bwd.
					stall force	F=15 pN	F=15pN	F=-15pN	F=-15pN	
							[ATP]=10 μ M		[ATP]=10 μ M	
	(s/uu)			(Nd)	(s)	(s)	(s)	(s)	(S)	
$k_{0 \to T} = 1 \ \mu \mathrm{M}^{-1} \ \mathrm{s}^{-1}$	443	1.34	105	-6.75	0.21	0.016	0.12	0.38	3.8	279
$k_{0 \to { m T}} = 2 \; \mu { m M}^{-1} \; { m s}^{-1}$	453	1.35	106	-6.75	0.20	0.016	0.063	0.36	2.10	300
$k_{0\to {\rm T}} = 5 \; \mu {\rm M}^{-1} \; {\rm s}^{-1}$	458	1.36	106	-6.75	0.19	0.015	0.032	0.35	1.05	314
$k_{0\to {\rm T}} = 10 \; \mu {\rm M}^{-1} \; {\rm s}^{-1}$	459	1.37	106	-6.75	0.19	0.016	0.02	0.34	0.70	317
$k_{0 \to T} = 30 \ \mu M^{-1} \ s^{-1}$	456	1.40	106	-6.75	0.19	0.016	0.017	0.34	0.47	318
$k_{\mathrm{T}\to 0} = 1 \mathrm{s}^{-1}$	398	1.93	108	-6.5	0.17	0.018	0.038	0.29	0.40	267
$k_{\mathrm{T}\rightarrow0}=10~\mathrm{s}^{-1}$	451	1.41	106	-6.75	0.19	0.016	0.036	0.34	0.52	308
$k_{\mathrm{T}\to 0} = 500 \mathrm{~s^{-1}}$	457	1.34	107	-6.75	0.21	0.015	0.042	0.38	4.6	318
$k_{{ m T}^* \to 0} = 1 { m s}^{-1}$	461	1.36	106	-6.75	0.20	0.015	0.015	0.35	1.31	325
$k_{{ m T}^* ightarrow 0} = 10~{ m s}^{-1}$	461	1.36	106	-6.75	0.20	0.015	0.015	0.35	1.31	331
$k_{\rm T^*\to 0} = 100 {\rm ~s^{-1}}$	461	1.36	106	-6.75	0.20	0.015	0.015	0.35	1.31	330
$k_{0\to {\rm D}} = 0.1 \ \mu {\rm M}^{-1} \ {\rm s}^{-1}$	448	1.44	107	-6.75	0.20	0.016	0.040	0.34	1.26	306
$k_{0\to {\rm D}} = 100 \; \mu {\rm M}^{-1} \; {\rm s}^{-1}$	434	1.33	71	-6.5	0.16	0.015	0.036	0.31	1.07	179
$k_{\mathrm{D}\to 0} = 1 \mathrm{s}^{-1}$	6.3	1.25	0.17	-0.25	0.12	0.014	0.015	0.15	0.18	1.8
$k_{\rm D\to 0} = 10 {\rm s}^{-1}$	60	1.25	1.8	-3.25	0.09	0.014	0.018	0.19	0.43	4
$k_{\rm D\to 0} = 100 {\rm s}^{-1}$	344	1.29	27	-6.5	0.16	0.015	0.032	0.32	1.1	56
$k_{\rm D\to 0} = 600 {\rm s}^{-1}$	473	1.45	200	-6.75	0.20	0.016	0.043	0.36	1.31	776
$k_{\rm D\to 0} = 1000 {\rm \ s}^{-1}$	467	1.56	272	-6.75	0.21	0.017	0.047	0.36	1.31	1390
$k_{{ m D}^* ightarrow 0} = 1 { m s}^{-1}$	456	1.37	106	-6.75	0.20	0.016	0.039	0.35	1.27	309
$k_{{\rm D}^*\to 0} = 10{\rm s}^{-1}$	445	1.46	106	-6.75	0.20	0.016	0.042	0.35	1.27	301
$k_{\mathrm{D}^* \to 0} = 100 \mathrm{s}^{-1}$	361	2.32	109	-6.5	0.18	0.020	0.067	0.34	1.24	249
	[ATP] = 1000	$0 \mu \mathrm{M}$ and $F =$	0 throughout unle	ess indicated otl Table conti	herwise. Value: inued on next p	s in bold indic age.	ate deviation by mo	e than a factor	of 2.	

	r	1	۱	
	٠	l	L	
		J	ł	

	velocity	#ATP/step	processivity	stall force	dwell	l time of fwd	steps at	dwell time c	of bwd. steps at	#fwd./#bwd.
					stall force	F=15 pN	F=15pN	F=-15pN	F=-15pN	
							[ATP]=10 μ M		[ATP]=10 μ M	
	(s/uu)			(N)	(s)	(s)	(s)	(s)	(S)	
$k_{\widetilde{\mathrm{D}}\to\mathrm{D}} = 1 \ \mu \mathrm{M}^{-1} \ \mathrm{s}^{-1}$	197	4	7.8	-6.5	0.28	0.025	0.077	0.92	2.51	204
$k_{\widetilde{\mathrm{D}} \to \mathrm{D}} = 2 \ \mu \mathrm{M}^{-1} \ \mathrm{s}^{-1}$	282	2.63	15	-6.5	0.22	0.020	0.057	0.62	1.87	290
$k_{\widetilde{\rm D} \to {\rm D}} = 100 \mu {\rm M}^{-1} {\rm s}^{-1}$	470	1.25	315	-6.75	0.19	0.015	0.037	0.33	1.22	173
$k_{\widetilde{\rm D} \to {\rm D}} = 1000 \ \mu {\rm M}^{-1} \ {\rm s}^{-1}$	456	1.24	2099	-6.75	0.19	0.014	0.037	0.32	1.21	108
$k_{\mathrm{D}\to\widetilde{\mathrm{D}}} = 1 \mathrm{s}^{-1}$	419	1.38	376	-5.75	0.21	0.015	0.039	0.36	1.33	151
$k_{\mathrm{D}\to\widetilde{\mathrm{D}}} = 30\mathrm{s}^{-1}$	462	1.38	28	-7.25	0.17	0.016	0.040	0.35	1.18	462
$k_{\mathrm{D}\to\widetilde{\mathrm{D}}} = 100 \mathrm{s}^{-1}$	447	1.48	7	-7.5	0.13	0.016	0.040	0.38	1.13	59
$k_{\mathrm{D}^* \to \widetilde{\mathrm{D}}} = 1 \mathrm{s}^{-1}$	10	17	12	-6.5	0.55	0.76	0.97	0.42	1.35	29
$k_{\mathrm{D}^* \to \widetilde{\mathrm{D}}} = 10 \mathrm{s}^{-1}$	71	3.2	59	-6.5	0.23	0.11	0.15	0.36	1.29	172
$k_{\mathrm{D}^* \to \widetilde{\mathrm{D}}} = 1000 \mathrm{~s^{-1}}$	927	1.18	72	-6.75	0.19	0.006	0.027	0.35	1.27	189
$k_{\mathrm{T} \rightarrow \widetilde{\mathrm{D}}} = 0.1 \mathrm{s}^{-1}$	460	1.35	155	-7.75	1.42	0.016	0.039	3.1	11	736
$k_{\mathrm{T} ightarrow \widetilde{\mathrm{D}}} = 1 \mathrm{s}^{-1}$	459	1.35	136	-7.25	0.48	0.016	0.039	0.00	3.24	528
$k_{\mathrm{T} ightarrow \widetilde{\mathrm{D}}} = 10 \mathrm{s}^{-1}$	451	1.38	58	9-	0.07	0.015	0.039	0.11	0.43	114
$k_{\mathrm{T}\rightarrow\widetilde{\mathrm{D}}}=50~\mathrm{s}^{-1}$	434	1.42	14	-4.75	0.02	0.014	0.037	0.03	0.11	18
$k_{\mathrm{T} \rightarrow \mathrm{D}} = 1 \mathrm{s}^{-1}$	461	1.25	113	-6.75	0.20	0.016	0.039	0.37	1.28	346
$k_{\mathrm{T} ightarrow \mathrm{D}} = 50 \ \mathrm{s}^{-1}$	444	1.78	86	-6.5	0.16	0.016	0.040	0.30	1.25	226
$k_{ m T \to D} = 100 \ { m s}^{-1}$	431	2.22	72	-6.25	0.13	0.015	0.040	0.27	1.23	173
$k_{\mathrm{T}^* \rightarrow \mathrm{D}^*} = 1 \mathrm{s}^{-1}$	31	2.63	196	9-	0.32	0.25	0.28	0.33	1.22	531
$k_{{ m T}^* ightarrow { m D}^*} = 10 { m s}^{-1}$	87	1.65	215	-6.25	0.22	0.089	0.11	0.34	1.24	672
$k_{{ m T}^* \to { m D}^*} = 100 { m \ s}^{-1}$	363	1.3	143	-6.75	0.20	0.020	0.043	0.35	1.27	456
$k_{\rm T^* \to D^*} = 500 {\rm \ s^{-1}}$	508	1.57	64	-6.75	0.19	0.013	0.037	0.35	1.28	176
$k_{\mathrm{T}^* \to \mathrm{D}^*} = 1000 \mathrm{s}^{-1}$	478	1.94	41	-6.5	0.16	0.012	0.038	0.35	1.28	106
	[ATP] = 1000	$0 \ \mu M$ and $F =$	0 throughout unle	ess indicated otl	herwise. Value:	s in bold indic:	ate deviation by mo	re than a factor	of 2.	

Fig. S1. Simulation results IV: Several observables for increased values (by 0, 3, 6, 12, and $24 k_B T$) of the free energy changes of neck linker docking ($\Delta G_{T,T^*}$ and $\Delta G_{D,D^*}$) compared to the values of Table 1, at 1 mM ATP as functions of the external load.

Fig. S2. Simulation results V: The gray areas indicate the parameter range along the $\Delta G_{T,T^*} - \Delta G_{D,D^*}$ plain, where the given stall loads (4, 5, 6, and 7 pN) at $[ATP] = 1000 \ \mu$ M can be attained by our model, in such a way that all the first 9 prescribed conditions in Table S1 are also obeyed.

Movie S1. Flux distribution in the state space at low (10 μ M) ATP concentration: The left panel (on a dark gray background) indicates how the velocity, the randomness, and the ratio of the numbers of forward and backward steps of kinesin change as the external force *F* is varied from -15 pN to 15 pN at low (10 μ M) ATP concentration. Simultaneously, the right panel shows the steady-state occupancy distribution (with the areas of the black squares being proportional to the occupation probabilities of the corresponding kinetic states) and flux distribution (where positive fluxes are marked green and negative fluxes are marked red, with the width and saturation indicating the flux strength) in the two-dimensional state space (cf. Fig. 1). The flux for each transition is defined as the difference between the corresponding forward and backward transition rates.

Movie S2. Flux distribution in the state space at high (1000 μ M) ATP concentration: The same as Movie S1, but at high (1000 μ M) ATP concentration.