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Spectra of ‘‘real-world’’ graphs: Beyond the semicircle law
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Many natural and social systems develop complex networks that are usually modeled as random graphs. The
eigenvalue spectrum of these graphs provides information about their structural properties. While the semi-
circle law is known to describe the spectral densities of uncorrelated random graphs, much less is known about
the spectra of real-world graphs, describing such complex systems as the Internet, metabolic pathways, net-
works of power stations, scientific collaborations, or movie actors, which are inherently correlated and usually
very sparse. An important limitation in addressing the spectra of these systems is that the numerical determi-
nation of the spectra for systems with more than a few thousand nodes is prohibitively time and memory
consuming. Making use of recent advances in algorithms for spectral characterization, here we develop meth-
ods to determine the eigenvalues of networks comparable in size to real systems, obtaining several surprising
results on the spectra of adjacency matrices corresponding to models of real-world graphs. We find that when
the number of links grows as the number of nodes, the spectral density of uncorrelated random matrices does
not converge to the semicircle law. Furthermore, the spectra of real-world graphs have specific features,
depending on the details of the corresponding models. In particular, scale-free graphs develop a trianglelike
spectral density with a power-law tail, while small-world graphs have a complex spectral density consisting of
several sharp peaks. These and further results indicate that the spectra of correlated graphs represent a practical
tool for graph classification and can provide useful insight into the relevant structural properties of real
networks.
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I. INTRODUCTION

Random graphs@1,2# have long been used for modelin
the evolution and topology of systems made up of large
semblies of similar units. The uncorrelated random gra
model—which assumes each pair of the graph’s vertice
be connected with equal and independent probabilitie
treats a network as an assembly of equivalent units. T
model, introduced by the mathematicians Paul Erdo˝s and Al-
fréd Rényi @1#, has been much investigated in the mathem
cal literature @2#. However, the increasing availability o
large maps of real-life networks has indicated that real n
works are fundamentally correlated systems, and in m
respects their topology deviates from the uncorrelated
dom graph model. Consequently, the attention has shi
towards more advanced graph models which are designe
generate topologies in line with the existing empirical resu
@3–14#. Examples of real networks, that serve as a ben
mark for the current modeling efforts, include the Intern
@6,15–17#, the World-Wide Web@8,18#, networks of collabo-
rating movie actors and those of collaborating scient
@13,14#, the power grid@4,5#, and the metabolic network o
numerous living organisms@9,19#.
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These are the systems that we will call‘‘real-world’’ net-
worksor graphs. Several converging reasons explain the e
hanced current interest in such real graphs. First, the am
of topological data available on such large structures
increased dramatically during the past few years thanks
the computerization of data collection in various fields, fro
sociology to biology. Second, the hitherto unseen speed
growth of some of these complex networks—e.g., t
Internet—and their pervasiveness in affecting many asp
of our lives has created the need to understand the topol
origin, and evolution of such structures. Finally, the i
creased computational power available on almost ev
desktop has allowed us to study such systems in un
cedented detail.

The proliferation of data has lead to a flurry of activi
towards understanding the general properties of real
works. These efforts have resulted in the introduction of t
classes of models, commonly calledsmall-world graphs
@4,5# and thescale-free networks@10,11#. The first aims to
capture the clustering observed in real graphs, while the
ond reproduces the power-law degree distribution presen
many real networks. However, until now, most analyses
these models and data sets have been confined to real-s
characteristics, which capture their static structural proper
e.g., degree sequences, shortest connecting paths, and
tering coefficients. In contrast, there is extensive literat
demonstrating that the properties of graphs and the ass
ated adjacency matrices are well characterized by spe
methods, that provide global measures of the network pr
erties@20,21#. In this paper we offer a detailed analysis of th
©2001 The American Physical Society04-1
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most studied network models using algebraic tools intrin
to large random graphs.

The paper is organized as follows. Section II introduc
the main random graph models used for the topological
scription of large assemblies of connected units. Section
lists the—analytical and numerical—tools that we used a
developed to convert the topological features of graphs
algebraic invariants. Section IV contains our results conce
ing the spectra and special eigenvalues of the three m
types of random graph models: sparse uncorrelated ran
graphs in Sec. IV A, small-world graphs in Sec. IV B, a
scale-free networks in Sec. IV C. Section IV D gives simp
algorithms for testing the graph’s structure, and Sec. IV
investigates the variance of structure within single rand
graph models.

II. MODELS OF RANDOM GRAPHS

A. The uncorrelated random graph model
and the semicircle law

1. Definitions

Throughout this paper we will use the term ‘‘graph’’ for a
set of points~vertices! connected by undirected lines~edges!;
no multiple edges and no loops connecting a vertex to it
are allowed. We will call two vertices of the graph ‘‘neigh-
bors,’’ if they are connected by an edge. Based on Ref.@1#,
we shall use the term ‘‘uncorrelated random graph’’ for a
graph if~i! the probability for any pair of the graph’s vertice
being connected is the same,p; ~ii ! these probabilities are
independent variables.

Any graphG can be represented by itsadjacency matrix
A(G), which is a real symmetric matrix:Ai j 5Aji 51, if
verticesi and j are connected, or 0, if these two vertices a
not connected. The main algebraic tool that we will use
the analysis of graphs will be the spectrum—i.e., the se
eigenvalues—of the graph’s adjacency matrix. The spect
of the graph’s adjacency matrix is also called thespectrum of
the graph.

2. Applying the semicircle law for the spectrum of the
uncorrelated random graph

A general form of the semicircle law for real symmetr
matrices is the following@20,22,23#. If A is a real symmetric
N3N uncorrelated random matrix,^Ai j &[0 and^Ai j

2 &5s2

for every iÞ j , and with increasingN each moment of each
uAi j u remains finite, then in theN→` limit the spectral
density—i.e., the density of eigenvalues—ofA/AN con-
verges to the semicircular distribution

r~l!5H ~2ps2!21A4s22l2 if ulu,2s

0 otherwise.
~1!

This theorem is also known asWigner’s law@22#, and its
extensions to further matrix ensembles have long been u
for the stochastic treatment of complex quantum-mechan
systems lying far beyond the reach of exact methods@24,25#.
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Later, the semicircle law was found to have many appli
tions in statistical physics and solid-state physics as w
@20,21,26#.

Note, that for the adjacency matrix of the uncorrelat
random graph many of the semicircle law’s conditions do
hold, e.g., the expectation value of the entries is a nonz
constant:pÞ0. Nevertheless, in theN→` limit, the re-
scaled spectral density of the uncorrelated random gr
converges to the semicircle law of Eq.~1! @27#. An illustra-
tion of the convergence of the average spectral density to
semicircular distribution can be seen on Fig. 1. It is nec
sary to make a comment concerning figures here. In orde
keep figures simple, for the spectral density plots we h
chosen to show the spectral density of the original matrixA
and to rescale the horizontal~l! and vertical~r! axes by
s21N21/25@Np(12p)#21/2 andsN1/25@Np(12p)#1/2.

Some further results on the behavior of the uncorrela
random graph’s eigenvalues, relevant for the analysis of r
world graphs as well, include the following: The princip
eigenvalue~the largest eigenvaluel1) grows much faster
than the second eigenvalue: limN→`(l1 /N)5p with prob-
ability 1, whereas for everye.1/2, limN→`(l2 /Ne)50 ~see
Refs. @27,28# and Fig. 1!. A similar relation holds for the
smallest eigenvaluelN : for every e.1/2, limN→`(lN /Ne)
50. In other words, if̂ ki& denotes the average number
connections of a vertex in the graph, thenl1 scales aspN
'^ki&, and the width of the ‘‘bulk’’ part of the spectrum, th
set of the eigenvalues$l2 , . . . ,lN%, scales assAN. Lastly,
the semicircular distribution’s edges are known to dec

FIG. 1. If N→` and p5const, the average spectral density
an uncorrelated random graph converges to a semicircle, the
eigenvalue grows asN, and the second is proportional toAN ~see
Sec. II A!. Main panel:The spectral density is shown forp50.05
and three different system sizes:N5100 ~—!, N5300 ~– –!, and
N51000 ~- - -!. In all three cases, the complete spectrum of 10
graphs was computed and averaged.Inset:At the edge of the semi-
circle, i.e., in thel'62ANp(12p) regions, the spectral densit
decays exponentially, and withN→`, the decay rate diverge
@20,29#. Here,F(l)5N21(l i,l1 is the cumulative spectral distri
bution function, and 12F is shown for a graph withN53000
vertices and 15 000 edges.
4-2
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exponentially, and the number of eigenvalues in thel
.O(AN) tail has been shown to be of the order of 1@20,29#.

B. Real-world graphs

The two main models proposed to describe real-wo
graphs are thesmall-world modeland thescale-free model.

1. Small-world graphs

The small-world graph@4,5,30# is created by randomly
rewiring some of the edges of a regular@31# ring graph. The
regular ring graph is created as follows. First draw the v
tices 1,2, . . . ,N on a circle in ascending order. Then, f
every i, connect vertexi to the vertices lying closest to it o
the circle: verticesi 2k/2, . . . ,i 21,i 11, . . . ,i 1k/2, where
every number should be understood moduloN (k is an even
number!. Figure 9 will show later that this algorithm create
a regular graph indeed, because the degree@31# of any vertex
is the same numberk. Next, starting from vertex 1 and pro
ceeding towardsN, perform therewiring step. For vertex 1,
consider the first ‘‘forward connection,’’ i.e., the connectio
to vertex 2. With probabilitypr , reconnect vertex 1 to an
other vertex chosen uniformly at random and without allo
ing multiple edges. Proceed toward the remaining forw
connections of vertex 1, and then perform this step for
remainingN21 vertices also. For the rewiring, use equ
and independent probabilities. Note that in the small-wo
model the density of edges isp5^ki&/(N21)'k/N.
Throughout this paper, we will use onlyk.2.

If we use pr50 in the small-world model, the origina
regular graph is preserved, and forpr51, one obtains a ran
dom graph that differs from the uncorrelated random gra
only slightly: every vertex has a minimum degree ofk/2.
Next, we will need two definitions. Theseparationbetween
verticesi andj, denoted byLi j , is the number of edges in th
shortest path connecting them. Theclustering coefficientat
vertex i, denoted byCi , is the number of existing edge
among the neighbors of vertexi divided by the number of al
possible connections between them. In the small-wo
model, bothLi j and Ci are functions of the rewiring prob
ability pr . Based on the above definitions ofLi j (pr) and
Ci(pr), the characteristics of the small-world phenomen
which occurs for intermediate values ofpr , can be given as
follows @4,5#: ~i! the average separation between two ve
ces,L(pr), drops dramatically belowL(pr50), whereas~ii !
the average clustering coefficientC(pr) remains high, close
to C(pr50). Note that the rewiring procedure is carried o
independently for every edge; therefore, the degree sequ
and also other distributions in the system, e.g., path len
and loop size, decay exponentially.

2. The scale-free model

The scale-free model assumes a random graph to b
growingset of vertices and edges, where the location of n
edges is determined by apreferential attachment rule
@10,11#. Starting from an initial set ofm0 isolated vertices,
one adds one new vertex andm new edges at every time ste
t. ~Throughout this paper, we will usem5m0.! The m new
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edges connect the new vertex andm different vertices chosen
from the N old vertices. Thei th old vertex is chosen with
probability ki /( j 51,Nkj , whereki is the degree of vertexi.
@The density of edges in a scale-free graph isp5^ki&/(N
21)'2m/N.# In contrast to the small-world model, the dis
tribution of degrees in a scale-free graph converges t
power law whenN→`, which has been shown to be a com
bined effect of growth and the preferential attachment@11#.
Thus, in the infinite time or size limit, the scale-free mod
has no characteristic scale in the degree size@14,32–37#.

3. Related models

Lately, numerous other models have been suggested
unified descriptionof real-world graphs@14,32–35,37–40#.
Models of growing networks with aging vertices were fou
to display both heavy tailed and exponentially decaying
gree sequences@34–36# as a function of the speed of aging
Generalized preferential attachment rules have helped us
ter understand the origin of the exponents and correlati
emerging in these systems@32,33#. Also, investigations of
more complex network models—using aging or an additio
fixed cost of edges@12# or preferential growth and random
rewiring @37#—have shown, that in the ‘‘frequent rewiring
fast aging, high cost’’ limiting case, one obtains a graph w
an exponentially decaying degree sequence, whereas in
‘‘no rewiring, no aging, zero cost’’ limiting case the degre
sequence will decay as a power law. According to studies
scientific collaboration networks@13,14# and further social
and biological structures@12,19,41#, a significant proportion
of large networks lies between the two extremes. In su
cases, the characterization of the system using a small n
ber of algebraic constants could facilitate the classification
real-world networks.

III. TOOLS

A. Analytical

1. The spectrum of the graph

The spectrum of a graph is the set of eigenvalues of
graph’s adjacency matrix. The physical meaning of a grap
eigenpair~an eigenvector and its eigenvalue! can be illus-
trated by the following example. Write each component o
vector vW on the corresponding vertex of the graph:v i on
vertex i. Next, on every vertex write the sum of the numbe
found on the neighbors of vertexi. If the resulting vector is a
multiple of vW , thenvW is an eigenvector, and the multiplier i
the corresponding eigenvalue of the graph.

The spectral density of a graph is the density of the eig
values of its adjacency matrix. For a finite system, this c
be written as a sum ofd functions

r~l!ª
1

N (
j 51

N

d~l2l j !, ~2!

which converges to a continuous function withN→` (l j is
the j th largest eigenvalue of the graph’s adjacency matri!.
4-3
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The spectral density of a graph can be directly related
the graph’s topological features: thekth momentMk of r~l!
can be written as

Mk5
1

N (
j 51

N

~l j !
k5

1

N
Tr~Ak!

5
1

N (
i 1 ,i 2 ,•••,i k

Ai 1 ,i 2
Ai 2 ,i 3

•••Ai k ,i 1
. ~3!

From the topological point of view,Dk5NMk is the num-
ber of directed paths ~loops! of the underlying—
undirected—graph, that return to their starting vertex aftek
steps. On a tree, the length of any such path can be an
number only, because these paths contain any edge an
number of times: once such a path has left its starting p
by choosing a starting edge, no alternative route for return
to the starting point is available. However, if the graph co
tains loops of odd length, the path length can be an
number, as well.

2. Extremal eigenvalues

In an uncorrelated random graph the principal eigenva
l1 shows the density of edges andl2 can be related to the
conductance of the graph as a network of resistances@42#.
An important property of all graphs is the following: th
principal eigenvectoreW1 of the adjacency matrix is a non
negative vector~all components are non-negative!, and if the
graph has no isolated vertices,eW1 is a positive vector@43#.
All other eigenvectors are orthogonal toeW1, therefore they all
have entries with mixed signs.

3. The inverse participation ratios of eigenvectors

The inverse participation ratio of the normalizedj th ei-
genvectoreW j is defined as@26#

I j5 (
k51

N

@~ej !k#
4. ~4!

If the components of an eigenvector are identical, (ej ) i

51/AN for every i, then I j51/N. For an eigenvector with
one single nonzero component, (ej ) i5d i ,i 8 , the inverse par-
ticipation ratio is 1. The comparison of these two extrem
cases illustrates that with the help of the inverse participa
ratio, one can tell whether onlyO(1) or as many asO(N)
components of an eigenvector differ significantly from
i.e., whether an eigenvector is localized or nonlocalized.

B. Numerical

1. General real symmetric eigenvalue solver

To compute the eigenpairs of graphs belowthe size N
55000, we used the general real symmetric eigenva
solver of Ref.@44#. This algorithm requires the allocation o
memory space to all entries of the matrix, thus to comp
the spectrum of a graph of sizeN520 000 (N51 000 000)
using this general method with double precision float
point arithmetic, one would need 3.2 GB~8 TB! memory
02670
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space and the execution of approximately 30N251.231010

(331013) floating point operations@44#. Consequently, we
need to develop more efficient algorithms to investigate
properties of graphs with sizes comparable to real-world n
works.

2. Iterative eigenvalue solver based on the thick-restart
Lanczos algorithm

The spectrum of a real-world graph is the spectrum o
sparse real symmetric matrix; therefore, the most effici
algorithms that can give a handful of the topnd
eigenvalues—and the corresponding eigenvectors—o
large graph are iterative methods@45#. These methods allow
the matrix to be stored in any compact format, as long
matrix-vector multiplication can be carried out at a hig
speed.Iterative methods use little memory: only the nonzero
entries of the matrix and a few vectors of sizeN need to be
stored. The price for computational speed lies in the num
of the obtained eigenvalues: iterative methods compute o
a handful of the largest~or smallest! eigenvalues of a matrix
To compute the eigenvalues of graphs above the sizeN
55 000, we have developed algorithms using a speci
modified version of the thick-restart Lanczos algorith
@46,47#. The modifications and some of the main technic
parameters of our software are explained in the follow
paragraphs.

Even though iterative eigenvalue methods are mostly u
to obtain the top eigenvalues of a matrix, after minor mo
fications the internal eigenvalues in the vicinity of a fixe
l5l0 point can be computed as well. For this, extreme
sparse matrices are usually ‘‘shift-inverted,’’ i.e., to fin
those eigenvalues ofA that are closest tol0, the highest and
lowest eigenvalues of (A2l0I )21 are searched for. How
ever, because of the extremely high cost of matrix invers
in our case, for the computation of internal eigenvalues
suggest using the‘‘shift-square’’ methodwith the matrix

B5@l* /22~A2l0I !2#2n11. ~5!

Herel* is the largest eigenvalue of (A2l0I )2, I is the iden-
tity matrix, and n is a positive integer. Transforming th
matrix A into B transforms the spectrum ofA in the follow-
ing manner. First, the spectrum is shifted to the left byl0.
Then, the spectrum is ‘‘folded’’~and squared! at the origin
such that all eigenvalues will be negative. Next, the spectr
is linearly rescaled and shifted to the right, with the follow
ing effect: ~i! the whole spectrum will lie in the symmetri
interval @2l* /2,l* /2# and ~ii ! those eigenvalues that wer
closest tol0 in the spectrum ofA will be the largest now,
i.e., they will be the eigenvalues closest tol* /2. Now, rais-
ing all eigenvalues to the (2n11)st power increases th
relative difference, 12l i /l j , between the top eigenvalue
l i and l j by a factor of 2n11. This allows the iterative
method to find the top eigenvalues ofB more quickly. One
can compute the corresponding eigenvalues~those being
closest tol0) of the original matrix,A: if bW 1,bW 2 , . . . ,bW nd

are

the normalized eigenvectors of thend largest eigenvalues o
4-4
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B, then for A the nd eigenvalues closest tol0 will be, not
necessarily in ascending order,bW 1AbW 1 ,bW 2AbW 2 , . . . ,bW nd

AbW nd
.

The thick-restart Lanczos method uses memory space
the nonzero entries of theN3N large adjacency matrix, an
ng11 vectors of lengthN, whereng (ng.nd) is usually be-
tween 10 and 100. Besides the relatively small size of
quired memory, we could also exploit the fact that the no
zero entries of a graph’s adjacency matrix are all 1’s: dur
matrix-vector multiplication—which is usually the mo
time-consuming step of an iterative method—only additio
had to be carried out instead of multiplications.

The numerical spectral density functions of large grap
(N>5000) of this paper were obtained using the followi
steps. To compute the spectral density of the adjacency
trix A at an internall5l0 location, first thend eigenvalues
closest tol0 were searched for. Next, the distance betwe
the smallest and the largest of the obtained eigenvalues
computed. Finally, to obtainr(l0) this distance was multi-
plied by N/(nd21), and was averaged usingnav different
graphs. We used double precision floating point arithme
and the iterations were stopped if~i! at leastnit iterations had
been carried out and~ii ! the lengths of the residual vecto
belonging to thend selected eigenpairs were all below«
510212 @46#.

IV. RESULTS

A. Sparse uncorrelated random graphs:
The semicircle law is not universal

In the uncorrelated random graph model of Erdo˝s and
Rényi, the total number of edges grows quadratically w
the number of vertices:Nedge5N^ki&5Np(N21)'pN2.
However, in many real-world graphs edges are ‘‘expensiv
and the growth rate of the number of connections rema
well below this rate. For this reason, we also investigated
spectra of such uncorrelated networks, for which the pr
ability of any two vertices being connected changes with
size of the system usingpNa5c5const. Two special case
are a50 ~the Erdős-Rényi model! and a51. In the second
case,pN→const asN→`, i.e., the average degree remai
constant.

For a,1 and N→`, there exists an infinite cluster o
connected vertices~in fact, it exists for everya<1 @2#!.
Moreover, the expectation value of anyki converges to in-
finity, thus any vertex is almost surely connected to the in
nite cluster. The spectral density function converges to
semicircular distribution of Eq.~1! because the total weigh
of isolated subgraphs decreases exponentially with grow
system size.~A detailed analysis of this issue is available
Ref. @48#.!

For a51 and N→` ~see Fig. 2!, the probability for a
vertex to belong to a cluster of any finite size remains a
finite @49#. Therefore, the limiting spectral density contai
the weighted sum of the spectral densities of all finite gra
@50#. The most striking deviation from the semicircle law
this case is the elevated central part of the spectral den
The probability for a vertex to belong to an isolated clus
of size s decreases exponentially withs @49#; therefore, the
02670
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number of large isolated clusters is low. The eigenvalues
graph withs vertices are bounded by2As21 andAs21.
For these two reasons, the amplitudes ofd functions decay
exponentially, as the absolute value of their locations,ulu,
increases.

The principal eigenvalue of this graph converges to a c
stant: limN→`(l1)5pN5c, andr~l! will be symmetric in
the N→` limit. Therefore, in the limit, all odd moments
(M2k11), and thus the number of all loops with odd leng
(D2k11), disappear. This is a salient feature of graphs w
tree structure~because on a tree every edge must be used
even number of times in order to return to the initial verte!,
indicating that the structure of a sparse uncorrelated rand
graph becomes more and more treelike. This can also
understood by considering that the typical distance~length of
the shortest path! between two vertices on both a sparse u
correlated random graph and a regular tree with the sa
number of edges scales as ln(N). So except for a few short
cuts a sparse uncorrelated random graph looks like a tre

B. The small-world graph

Triangles are abundant in the graph

For pr50 the small-world graph isregular and also pe-
riodical. Because of the highly ordered structure,r~l! con-
tains numerous singularities, which are listed in Sec. V
~see also Fig. 3!. Note thatr~l! has a high third moment
~Remember, that we use onlyk.2.!

FIG. 2. If N→` and pN5const, the spectral density of th
uncorrelated random graph does not converge to a semicircle.Main
panel: Symbols show the spectrum of an uncorrelated rand
graph~20 000 vertices and 100 000 edges! measured with the itera
tive method usingnav51, nd5101, andng5250. A solid line
shows the semicircular distribution for comparison.~Note that the
principal eigenvaluel1 is not shown here because here at anyl0

point the average first-neighbor distance amongnd5101 eigenval-
ues was used to measure the spectral density.! Inset: Strength ofd
functions inr~l! ‘‘caused’’ by isolated clusters of sizes 1, 2, and
in uncorrelated random graphs~see Ref.@50# for a detailed expla-
nation!. Symbols are for graphs with 20 000 vertices and 20 0
edges~¹!, 50 000 edges~d!, and 100 000 edges~s!. Results were
averaged for three different graphs everywhere.
4-5
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If we increasepr such that the small-world region i
reached, i.e., the periodical structure of the graph is p
turbed, then singularities become blurred and are tra
formed into high local maxima, butr~l! retains a strong
skewness~see Fig. 3!. This is in good agreement with th
results of Refs.@30,51#, where it has been shown that th
local structure of the small-world graph is ordered; howev
already a very small number of shortcuts can drastic
change the graph’s global structure.

In the pr51 case the small-world model becomes ve
similar to the uncorrelated random graph: the only differen
is that here, the minimum degree of any vertex is a posi
constantk/2, whereas in an uncorrelated random graph
degree of a vertex can be any non-negative number. Acc
ingly, r~l! becomes a semicircle forpr51 ~Fig. 3!. Never-
theless, it should be noted that aspr converges to 1, a high
value of M3 is preserved even forpr close to 1, where all
local maxima have already vanished. The third momen
r~l! gives the number of triangles in the graph~see Sec.
III A 1 !; the lack of high local maxima, i.e., the remnants
singularities, shows the absence of an ordered struc
From the above we conclude, that—from the spectru
point of view—the high number of triangles is one of th
most basic properties of the small-world model, and it
preserved much longer than regularity or periodicity if t

FIG. 3. Spectral densities of small-world graphs using the co
plete spectra. The solid line shows the semicircular distribution
comparison.~a! Spectral density of the regular ring graph creat
from the small-world model withpr50, k510, andN51000. ~b!
For pr50.01, the average spectral density of small-world gra
contains sharp maxima, which are the ‘‘blurred’’ remnants of
singularities of thepr50 case. Topologically, this means that th
graph is still almost regular, but it contains a small number of i
purities. In other words, after a small perturbation, the system is
longer degenerate.~c! The average spectral density computed
the pr50.3 case shows that the third moment ofr~l! is preserved
even for very high values ofpr , where there is already no sign o
any blurred singularity~i.e., regular structure!. This means that even
though all remaining regular islands have been destroyed alre
triangles are still dominant. ~d! If pr51, then the spectral densit
of the small-world graph converges to a semicircle. In~b!, ~c!, and
~d!, 1000 different graphs withN51000 andk510 were used for
averaging.
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level of randomnesspr is increased. This is in good agree
ment with the results of Ref.@19# where the high number o
small cycles is found to be a fundamental property of sm
world networks. As an application, the high number of sm
cycles results in special diffusion on small-world grap
@61#.

C. The scale-free graph

For m5m051, the scale-free graph is a tree by definitio
and its spectrum is symmetric@43#. In the m.1 caser~l!
consists of several well distinguishable parts~see Fig. 4!.
The ‘‘bulk’’ part of the spectral density—the set of the eige
values$l2 , . . . ,lN%—converges to a symmetric continuou
function which has a trianglelike shape for the normalizedl
values up to 1.5 and has power-law tails.

The central part of the spectral density lies well above
semicircle. Since the scale-free graph is fully connected
definition, the increased number of eigenvalues with sm
magnitudes cannot be accounted to isolated clusters, as
fore in the case of the sparse uncorrelated random graph
an explanation, we suggest, that the eigenvectors of th
eigenvalues are localized on a small subset of the gra
vertices.~This idea is supported by the high inverse parti
pation ratios of these eigenvectors, see Fig. 7.!

1. The spectral density of the scale-free graph decays
as a power law

The inset of Fig. 4 shows the tail of the bulk part of th
spectral density for a graph withN540 000 vertices and

-
r

s

-
o

r

dy,

FIG. 4. Main panel:The average spectral densities of scale-fr
graphs withm5m055 andN5100 ~—!, N51000 ~– –!, and N
57000~- - -! vertices.~In all three cases, the complete spectrum
1000 graphs was used.! Another continuous line shows the semici
cular distribution for comparison. Observe that~i! the central part of
the scale-free graph’s spectral density is trianglelike, not semici
lar and~ii ! the edges show a power-law decay, whereas the se
circular distribution’s edges decay exponentially, i.e., it decays
ponentially at the edges@20#. Inset:The upper edge of the spectra
density for scale-free graphs withN540 000 vertices, the averag
degree of a vertex beinĝki&52m510 as before. Note that both
axes are logarithmic, indicating thatr~l! has a power-law tail. Here
we used the iterative eigenvalue solver of Sec. III B 2 withnd

521, nav53, andng560. The line with the slope25 in this figure
is a guide to the eye.
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200 000 edges~i.e., pN510). Comparing this to the inset o
Fig. 1, where the number of vertices and edges is the sam
here, one can observe thepower-law decayat the edge of the
bulk part of r~l!. As shown later, in Sec. IV D, the powe
law decay in this region is caused by localized eigenvect
these eigenvectors are localized on vertices with the hig
degrees. The power-law decay of the degree sequence
the existence of very high degrees, is, in turn, due to
preferential attachment rule of the scale-free model.

2. The growth rate of the principal eigenvalue shows
a crossover in the level of correlations

Since the adjacency matrix of a graph is a non-nega
symmetric matrix, the graph’s largest eigenvaluel1 is also
the largest in magnitude~see, e.g., Theorem 0.2 of Ref.@43#!.
Considering the effect of the adjacency matrix on the b
vectors (bi) j5d i j ( i 51,2, . . . ,N), it can be shown that a
lower bound forl1 is given by the length of the longest ro
vector of the adjacency matrix, which is the square root
the graph’s largest degreek1. Knowing that the largest de
gree of a scale-free graph grows asAN @11#, one expectsl1
to grow asN1/4 for large enough systems.

Figure 5 shows a rescaled plot of the scale-free grap
largest eigenvalue for different values ofm. In this figure,l1

is compared to the length of the longest row vectorAk1 on
the ‘‘natural scale’’ of these values, which isAmN1/4 @11#. It
is clear that ifm.1 and the system is small, then throug

FIG. 5. Comparison of the length of the longest row vectorAk1

and the principal eigenvaluel1 in scale-free graphs. Open symbo
showl1 /(AmN1/4), closed symbols showAk1/(AmN1/4). The pa-
rameter values arem51 ~s!, m52 ~n!, m54 ~,!, and m58
~L!. Each data point is an average for nine graphs. For the read
convenience, data points are connected. Ifm.1 and the network is
small, the principal eigenvaluel1 of a scale-free graph is dete
mined by the largest row vectors jointly: the largest eigenvalue
aboveAk1 and the growth rate ofl1 stays below the maximum
possible growth rate, which isl1}N1/4. If m51, or the network is
large, the effect of row vectors other than the longest onl1 van-
ishes: the principal eigenvalue converges to the length of the lo
est row vector, and it grows asl1}N1/4. Our results show a cross
over in the growth rate of the scale-free model’s princip
eigenvalue.
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several decades~a! l1 is larger thanAk1 and~b! the growth
rate ofl1 is well below the expected rate ofN1/4. In the m
51 case, and for large systems,~a! the difference between
l1 andAk1 vanishes and~b! the growth rate of the principa
eigenvalue will be maximal, too. This crossover in the b
havior of the scale-free graph’s principal eigenvalue is a s
cific property of sparse growing correlated graphs, and it
result of the changing level of correlations between the lo
est row vectors~see Sec. VI B!.

3. Comparing the role of the principal eigenvalue
in the scale-free graph and theaÄ1 uncorrelated random

graph: A comparison of structures

Now we will compare the role of the principal eigenvalu
in the m.1 scale-free graph and thea51 uncorrelated ran-
dom graph through its effect on the moments of the spec
density. On Figs. 4 and 5 one can observe that~i! the prin-
cipal eigenvalue of the scale-free graph is detached from
rest of the spectrum, and~ii ! asN→`, it grows asN1/4 ~see
also Secs. IV C 2 and VI B!. It can be also seen that in th
limit, the bulk part will be symmetric, and its width will be
constant„Fig. 4 rescales this constant width merely by a
other constant, namely@Np(12p)#21/2. Because of the sym
metry of the bulk part, in theN→` limit, the third moment
of r~l! is determined exclusively by the contribution of th
principal eigenvalue, which isN21(l1)3}N21/4. For each
moment above the third~e.g., for the l th moment!, with
growing N, the contribution of the bulk part to this momen
will scale asO(1), and thecontribution of the principal ei-
genvalue will scale asN211 l /4. In summary, in theN→`
limit, the scale-free graph’s first eigenvalue has a signific
contribution to the fourth moment; the fifth and all high
moments are determined exclusively byl1: the l th moment
will scale asN211 l /4.

In contrast to the above, the principal eigenvalue of
a51 uncorrelated random graph converges to the cons
pN5c in theN→` limit, and the width of the bulk part also
remains constant~see Fig. 2!. Given a fixed numberl the
contribution of the principal eigenvalue to thel th moment of
the spectral density will change asN21cl in theN→` limit.
The contribution of the bulk part will scale asO(1), there-
fore all even moments of the spectral density will scale
O(1) in theN→` limit, and all odd moments will converge
to 0.

The difference between the growth rate of the moments
r~l! in the above two models~scale-free graph anda51
uncorrelated random graph model! can be interpreted as
sign of different structure~see Sec. III A 1!. In the N→`
limit, the average degree of a vertex converges to a cons
in both models: limN→`^ki&5pN5c52m. ~Both graphs
will have the same number of edges per vertex.! On the other
hand, in the limit all moments of thea51 uncorrelated ran-
dom graph’s spectral density converge to a constant, whe
the momentsMl ( l 55,6, . . . ) of thescale-free graph’sr~l!
will diverge asN211 l /4. In other words: the number of loop
of length l in the a51 uncorrelated random graph wi
grow asDl5NMl5O(N), whereas for the scale-free grap
for every l>3, the number of these loops will grow a
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Dl5NMl5O(Nl /4). From this we conclude that in th
limit, the role of loops is negligible in thea51 uncorrelated
random graph, whereas it is large in the scale-free graph
fact, the growth rate of the number of loops in the scale-f
graph exceeds all polynomial growth rates: the longer
loop size ~l! investigated, the higher the growth rate
the number of these loops (Nl /4) will be. Note that the rela-
tive number of triangles~i.e., the third moment of the spec
tral density,Ml /N) will disappear in the scale-free graph,
N→`.

In summary, the spectrum of the scale-free mo
converges to a trianglelike shape in the center, and the e
of the bulk part decay slowly. The first eigenvalue
detached from the rest of the spectrum, and it shows
anomalous growth rate. Eigenvalues with large magnitu
belong to eigenvectors localized on vertices with ma
neighbors. In the present context, the absence of triang
the high number of loops with length abovel 53, and the
buildup of correlations are the basic properties of the sc
free model.

D. Testing the structure of a ‘‘real-world’’ graph

To analyze the structure of a large sparse random gr
~correlated or not!, here we suggest several tests that can
performed withinO(N) CPU time, useO(N) floating point
operations, and can clearly differentiate between the th
‘‘pure’’ types of random graph models treated in Sec.
Furthermore, these tests allow one to quantify the rela
between any real-world graph and the three basic type
random graphs.

1. Extremal eigenvalues

In Sec. III A 2 we have already mentioned that the e
tremal eigenvalues contain useful information on the str
ture of the graph. As the spectra of uncorrelated rand
graphs~Fig. 1! and scale-free networks~Fig. 4! show, the
principal eigenvalue of random graphs is often detac
from the rest of the spectrum. For these two network typ
the remaining bulk part of the spectrum, i.e., the
$l2 , . . . ,lN%, converges to a symmetric distribution, th
the quantity

Rª
l12l2

l22lN
~6!

measures the distance of the first eigenvalue from
main part ofr~l! normalized by the extension of the ma
part. (R can be connected to the chromatic number of
graph@52#.!

Note that in theN→` limit the a50 sparse uncorrelate
random graph’s principal eigenvalue will scale as^ki&,
whereas bothl2 andu2lNu will scale as 2A^ki&. Therefore,
if ^ki&.4, the principal eigenvalue will be detached fro
the bulk part of the spectrum andR will scale as (A^ki&
22)/4. If, however,^ki&<4, l1 will not be detached from
the bulk part, it will converge to 0.

The above explanation and Fig. 6 show that in the^ki&
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.4 sparse uncorrelated random graph model and the sc
free network,l1 and the rest of the spectrum are well sep
rated, which gives similarly high values forR in small sys-
tems. In large systems,R of the sparse uncorrelated rando
graph converges to a constant, whileR in the scale-free
model decays as a power-law function ofN. The reason for
this drop is the increasing denominator on the right-hand s
of Eq. ~6!: l2 and lN are the extremal eigenvalues in th
lower and upper long tails ofr~l!, therefore, asN increases,
the expectation values ofl2 and 2lN grow as quickly as
that of l1. On the other hand, the small-world netwo
shows much lower values ofR already for small systems
here,l1 is not detached from the rest of the spectrum, wh
is a consequence of the almost periodical structure of
graph.

On Fig. 6 graphs with the same number of vertices a
edges are compared. For large (N>10 000) systems and fo
sparse uncorrelated random graphsR converges to a con
stant, whereas for scale-free graphs and small-world
works it decays as a power law. The latter two netwo
significantly differ in the magnitude ofR. In summary, the
suggested quantityR has been shown to be appropriate f
distinguishing between the following graph structures:~i! pe-
riodical or almost periodical~small world!, ~ii ! uncorrelated
nonperiodical, and~iii ! strongly correlated nonperiodica
~scale free!.

2. Inverse participation ratios of extremal eigenpairs

Figure 7 shows the inverse participation ratios of t
eigenvectors of an uncorrelated random graph, a small-w
graph withpr50.01, and a scale-free graph. Even though

FIG. 6. The ratioR5(l12l2)/(l22lN) for sparse uncorre-
lated random graphs~1!, small-world graphs withpr50.01 ~d!,
and scale-free networks~n!. All graphs have an average degree
^ki&510, and at each data point, the number of graphs used
averaging was 9. Observe, that for the uncorrelated random gr
R converges to a constant~see Sec. III A 2!, whereas it decays
rapidly for the two other types of networks, asN→`. On the other
hand, the latter two network types~small-world and scale-free! dif-
fer significantly in their magnitudes ofR.
4-8
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SPECTRA OF ‘‘REAL-WORLD’’ GRAPHS: BEYOND . . . PHYSICAL REVIEW E64 026704
three graphs have the same number of vertices (N51000)
and edges~5000!, one can observe rather specific featu
~see also the inset of Fig. 7!.

The uncorrelated random graph’s eigenvectors show v
little difference in their level of localization, except for th
principal eigenvector, which is much less localized than
other eigenvectors;I (l2) and I (lN) are almost equal. Fo
the small-world graph’s eigenvectors,I (l) has many differ-
ent plateaus and spikes; the principal eigenvector is not
calized, and the second andNth eigenvectors have high, bu
different, I (l) values. The eigenvectors belonging to t
scale-free graph’s largest and smallest eigenvalues are l
ized on the ‘‘largest’’ vertices. The long tails of the bulk pa
of r~l! are due to these vertices. All three investigated eig
vectors (eW1 , eW2, andeWN) of the scale-free graph are high
localized. Consequently, the inverse participation ratios
the eigenvectorseW1 , eW2, andeWN are handy for the identifica
tion of the three basic types of random graph models us

FIG. 7. Main panel:Inverse participation ratios of the eigenve
tors of three graphs shown as a function of the corresponding
genvalues: uncorrelated random graph~1!, small-world graph with
pr50.01 ~d!, and scale-free graph~n!. All three graphs haveN
51000 vertices, and the average degree of a vertex is^ki&510.
Observe that the eigenvectors of the sparse uncorrelated ran
graph and the small-world network are usually nonlocalized@ I (l)
is close to 1/N#. On the contrary, eigenvectors belonging to t
scale-free graph’s extremal eigenvalues are highly localized w
I (l) approaching 0.1. Note also that forl'0, the scale-free graph’s
I (l) has a significant ‘‘spike’’ indicating again the localization
eigenvectors.Inset: Inverse participation ratios of the first, secon
andNth eigenvectors of an uncorrelated random graph~1!, a small-
world graph withpr50.01 ~d!, and a scale-free graph~n!. For
each data point, the number of vertices wasN5300 000 and the
number of edges was 1 500 000. Clearly, the principal eigenve
of the scale-free graph is localized, while the principal eigenve
of the other two systems~the uncorrelated models! is not. Note also
that the inverse participation ratios of the second andNth eigenvec-
tors clearly differ in the small-world graph—the spectrum of th
graph has already been shown to be strongly asymmetric—whe
in the uncorrelated random graph the inverse participation ratio
eW2 and eWN are approximately the same. Thus, with the help of
inverse participation ratios ofeW1 , eW2, andeWN , one can identify the
three main types of random graphs used here.
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E. Structural variances

Relative variance of the principal eigenvalue for different types
of networks: The scale-free graph and self-similarity

Figure 8 shows the relative variance of the principal
genvalue, i.e.,s(l1)/E(l1), for the three basic random
graph types.

For nonsparse uncorrelated random graphs (N→` and
p5const! this quantity is known to decay at a rate which
faster than exponential@28,53#. Comparing sparse graph
with the same number of vertices and edges, one can see
in the sparse uncorrelated random graph and the small-w
model the relative variance of the principal eigenvalue dro
quickly with growing system size. In the scale-free mod
however, the relative variance of the principal eigenvalu
distribution remains constant with an increasing number
vertices.

In fractals, fluctuations do not disappear as the size of
system is increased, while in the scale-free graph, the rela
variance of the principal eigenvalue is independent of sys
size. In this sense, the scale-free graph resembles self-sim
systems.

V. CONCLUSIONS

We have performed a detailed analysis of the comp
spectra, eigenvalues, and the eigenvectors’ inverse partic
tion ratios in three types of sparse random graphs: the sp
uncorrelated random graph, the small-world model, and
scale-free network. Connecting the topological features
these graphs to algebraic quantities, we have demonstr
that ~i! the semi circle law is not universal, not even for th
uncorrelated random graph model;~ii ! the small-world graph
is inherently noncorrelated and contains a high number

i-

om

th

or
r

as
of
e

FIG. 8. Size dependence of the relative variance of the princ
eigenvalue, i.e.,s(l1)/E(l1), for sparse uncorrelated random
graphs~1!, small-world graphs withpr50.01 ~d!, and scale-free
graphs~n!. The average degree of a vertex is^ki&510, and 1000
graphs were used for averaging at every point. Observe that in
uncorrelated random graph and the small-world mo
s(l1)/E(l1) decays with increasing system size; however,
scale-free graphs with the same number of edges and vertice
remains constant.
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triangles;~iii ! the spectral density of the scale-free graph
made up of three, well distinguishable parts~center, tails of
bulk, first eigenvalue!, and asN→`, triangles become neg
ligible and the level of correlations changes.

We have presented practical tools for the identification
the above-mentioned basic types of random graphs and
ther, for the classification of real-world graphs. The rob
eigenvector techniques and observations outlined in this
per combined with previous studies are likely to improve o
understanding of large sparse correlated random structu
Examples for algebraic techniques already in use for la
sparse correlated random structures are analyses of the
net @6,18# and search engines@54,62# and mappings@55,56#
of the World-Wide Web. Besides the improvement of the
techniques, the present work may turn out to be useful
analyzing the correlation structure of the transactions
tween a very high number of economical and financial un
which has already been started in, e.g., Refs.@57–59#. Lastly,
we hope to have provided quantitative tools for the class
cation of further ‘‘real-world’’ networks, e.g., social and bio
logical networks.

Note added in proof. Recently, we were made aware of
manuscript by Goh, Kahng, and Kim@63# investigating the
spectral properties of scale-free networks. Also, our atten
has been drawn to a recent publication of Bauer a
Golinelli @64# on the spectral properties of uncorrelated ra
dom graphs.
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APPENDIX A: THE SPECTRUM OF A SMALL-WORLD
GRAPH FOR prÄ0 REWIRING PROBABILITY

1. Derivation of the spectral density

If the rewiring probability of a small-world graph ispr
50, then the graph is regular, each vertex is connected t

FIG. 9. The regular ring graph obtained from the small-wo
model in thepr50 case: rotations (P(n) for every n50,1, . . . ,N
21) are symmetry operations of the graph. TheP(n) operators
~there areN of them! can be used to create a full orthogonal basis
the adjacency matrixA: taking anyP(n), it commutes withA, there-
fore they have a common full orthogonal system of eigenvect
~For a clear illustration of symmetries, this figure shows a gra
with only N515 vertices andk54 connections per vertex.!
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k nearest neighbors, and the eigenvalues can be comp
using the graph’s symmetry operations. Rotational symme
operations can be easily recognized, if the vertices of
graph are drawn along the perimeter of a circle~see Fig. 9!:
let P(n) (n50,1, . . . ,N21) denote the symmetry operatio
that rotates the graph byn vertices in the anticlockwise di
rection. Being a symmetry operation, eachP(n) commutes
with the adjacency matrixA, and they have a common fu
orthogonal system of eigenvectors.

Now, we will create a full orthogonal basis ofA. ~We will
treat only the case whenN is an even number; oddN’s can
be treated similarly.! It is known that the eigenvalues ofA are
real; however, to simplify calculations, we will use comple
numbers first. The eigenvectors of everyP(n) are
eW1 ,eW2 , . . . ,eWN ,

~el ! j5expS 2p i
j l

ND , ~A1!

where l 50,2, . . . ,N21 and i 5A21. The eigenvalue of
P(n) on eW l is

sl
(n)5expS 2p i

nl

N D . ~A2!

By adding these values pairwise, one can obtain theN
eigenvalues of the graph

l l52(
j 51

k/2

cosS 2p
j l

ND . ~A3!

In the previous exponential form the right-hand side is
summation for a geometrical series; therefore,

l l5
sin@~k11!lp/N#

sin~ lp/N!
21. ~A4!

In the N→` limit, this converges to

l~x!5
sin@~k11!x#

sin~x!
21, ~A5!

wherex is evenly distributed in the interval@0,p#.

2. Singularities of the spectral density

The spectral density is singular inl5l(x), if and only if
(dl/dx)(x)50, which is equivalent to

~k11!tan~x!5tan@~k11!x#. ~A6!

Since k is an even number, both this equation and E
~A5! are invariant under the transformationx°p2x, there-
fore only thexe@0,p/2# solutions will give differentl val-
ues. Ifk510 ~see Fig. 3!, Eq. ~A6! hask/21156 solutions
in @0,p/2#, which arex50, 0.410, 0.704, 0.994, 1.28, an
p/2. Therefore, according to Eq.~A5!, in theN→` limit the
spectral density will be singular in the following points:

l i523.46,22.19,22,0.043,0.536, andk510. ~A7!
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APPENDIX B: CROSSOVER IN THE GROWTH RATE
OF THE SCALE-FREE GRAPH’S

PRINCIPAL EIGENVALUE

The largest eigenvalue is influenced only by the long
row vector if and only if the two longest row vectors a
almost orthogonal:

vW 1vW 2!uvW 1uuvW 2u. ~B1!

For m.1, the left-hand side~lhs! of Eq. ~B1! is the num-
ber of simultaneous 1’s in the two longest row vectors, a
the rhs can be approximated withuvW 1u25k1, the largest de-
gree of the graph. It is known@11# that for largej ( j . i ), the
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j th vertex will be connected to vertexi with probability Pi j

5m/(2Ai j ). Thus, we can write Eq.~B1! in the following
forms:
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, ~B3!

whereNc is the critical system size.
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@1# P. Erdős and A. Re´nyi, Publ Math6, 290 ~1959!; Publ. Math.
Inst. Hung. Acad. Sci.5, 17 ~1960!; 5, 290~1959!; Acta Math.
Acad. Sci. Hung.12, 261 ~1961!.

@2# B. Bollobás, Random Graphs~Academic, London, 1985!.
@3# S. Redner, Eur. Phys. J. B4, 131 ~1998!.
@4# D.J. Watts and S.H. Strogatz, Nature~London! 393, 440

~1998!.
@5# D.J. Watts,Small Worlds: The Dynamics of Networks Betwe

Order and Randomness (Princeton Reviews in Complex
~Princeton University Press, Princeton, NJ, 1999!.

@6# M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. C
mun. Rev.29, 251 ~1999!.

@7# L.A. Adamic and B.A. Huberman, Nature~London! 401, 131
~1999!.

@8# R. Albert, H. Jeong, and A.-L. Baraba´si, Nature~London! 401,
130 ~1999!.

@9# H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Bara
bási, Nature~London! 407, 651 ~2000!.

@10# A.-L. Barabási and R. Albert, Science286, 509 ~1999!.
@11# A.-L. Barabási, R. Albert, and H. Jeong, Physica A272, 173

~1999!.
@12# L.A.N. Amaral, A. Scala, M. Barthe´lémy, and H.E. Stanley,
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M. Montoya ~unpublished!.
@42# Handbook of Combinatorics, edited by R.L. Graham, M.

Grötschel, and L. Lova´sz ~North-Holland, Amsterdam, 1995!.
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